
How Humans Communicate Programming Tasks
in Natural Language and Implications For

End-User Programming with LLMs
Madison Pickering
University of Chicago
Chicago, Illinois, USA

madisonp@uchicago.edu

Helena Williams
University of Chicago
Chicago, Illinois, USA

hwilliams10@uchicago.edu

Alison Gan
University of Chicago
Chicago, Illinois, USA
agan@uchicago.edu

Weijia He
University of Southampton

Southampton, United Kingdom
University of Chicago
Chicago, Illinois, USA
weijia.he@soton.ac.uk

Hyojae Park
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
hyojae@cmu.edu

Francisco Piedrahita Velez
Brown University

Providence, Rhode Island, USA
fpiedrah@brown.edu

Michael L. Littman
Brown University

Providence, Rhode Island, USA
mlittman@cs.brown.edu

Blase Ur
University of Chicago
Chicago, Illinois, USA
blase@uchicago.edu

Abstract
Large language models (LLMs) like GPT-4 can convert natural-
language descriptions of a task into computer code, making them
a promising interface for end-user programming. We undertake a
systematic analysis of how people with and without programming
experience describe information-processing tasks (IPTs) in natural
language, focusing on the characteristics of successful communica-
tion. Across two online between-subjects studies, we paired crowd-
workers either with one another or with an LLM, asking senders
(always humans) to communicate IPTs in natural language to their
receiver (either a human or LLM). Both senders and receivers tried
to answer test cases, the latter based on their sender’s descrip-
tion. While participants with programming experience tended to
communicate IPTs more successfully than non-programmers, this
advantage was not overwhelming. Furthermore, a user interface
that solicited example test cases from senders often, but not always,
improved IPT communication. Allowing receivers to request clari-
fication, though, was less successful at improving communication.

CCS Concepts
• Human-centered computing→ Empirical studies in inter-
action design.

Keywords
Large Language Models, LLMs, End-User Programming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI ’25, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1394-1/25/04
https://doi.org/10.1145/3706598.3713271

ACM Reference Format:
Madison Pickering, Helena Williams, Alison Gan, Weijia He, Hyojae Park,
Francisco Piedrahita Velez, Michael L. Littman, and Blase Ur. 2025. How
Humans Communicate Programming Tasks in Natural Language and Impli-
cations For End-User Programming with LLMs. In CHI Conference on Human
Factors in Computing Systems (CHI ’25), April 26–May 01, 2025, Yokohama,
Japan. ACM, New York, NY, USA, 34 pages. https://doi.org/10.1145/3706598.
3713271

1 Introduction
Large language models (LLMs) have been demonstrating remark-
able jumps in performance in the past few years, resulting in their
rapid application to a wide range of problems. One application area
is program generation, where LLMs have been shown to be able to
write code using only natural language prompts [7, 52, 58].

We imagine a future in which LLMs enable end users (individ-
uals who may not have prior programming experience) to solve
programming-like problems via a natural language interface, free-
ing them from needing to learn the syntax of traditional program-
ming languages. To this end, we investigate the central issue of how
humans communicate computational tasks using only natural lan-
guage as an interface. Through two between-subjects online studies,
we examine interface factors designed to support people expressing
tasks in natural language, as well as attributes of the individuals
themselves that contribute to success. To increase generalizability,
we investigate the communication of tasks both between humans
(Study 1) and from a human to an LLM (Study 1 and Study 2).

To be precise, we focus on Information Processing Tasks
(IPTs), which necessitate a calculation that involves a self-contained
formal transformation of input to output. An example IPT is that
“you will be given a list containing numbers. Report the sum of
the positive elements.” In our study, the communication of an IPT
involves a sender, who substantially rephrases the IPTs we provide,

https://orcid.org/0009-0002-4000-2951
https://orcid.org/0009-0001-6612-6031
https://orcid.org/0009-0005-2109-4987
https://orcid.org/0009-0002-1189-7063
https://orcid.org/0000-0001-8686-5600
https://orcid.org/0000-0003-1222-0783
https://orcid.org/0000-0002-5596-1840
https://orcid.org/0000-0001-9365-3155
https://doi.org/10.1145/3706598.3713271
https://doi.org/10.1145/3706598.3713271
https://doi.org/10.1145/3706598.3713271

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Pickering et al.

and a receiver, who interprets and acts on the sender’s description.
To measure understanding, we have both the sender and receiver
answer test cases, specifying the output for provided inputs.

In preliminary work, we found that senders often struggled
to convey tasks successfully and hypothesized that two design
elements could be important for improving IPT communication.
One element is the use of examples: the sender is asked to include
appropriate input/output pairs for a given IPT when describing
it in natural language to make their description more concrete.
The other element is the opportunity to interact: the receiver is
encouraged to send prose feedback to their sender if they felt that
the sender’s description was unclear in any way.

In our analysis, we distinguish between non-programmers and
programmers (in the sense of having experience with traditional
programming languages like Python) to understand whether the
skills developed by programmers generalize to better understand
and convey IPTs in natural language. We also qualitatively explore
the characteristics of successful IPT communication.

Our data comes from two studies. The goal of the first study
is to examine what experimental factors (programming experience,
presence of examples, interaction affordances, IPT complexity) im-
prove human-to-human IPT communication. We do this by pairing
crowdworkers in real time and asking one member of the pair, the
sender, to communicate an IPT to the other participant, the re-
ceiver. The receiver then answers test cases that serve as a proxy
for how well the IPT was communicated. To determine what facets
of human-to-human IPT communication translate to successful
human-to-LLM communication, we also feed the sender’s natural
language IPT description to a collection of LLMs. In contrast, the
goal of our second study is to investigate how humans commu-
nicate IPTs to LLMs directly. As such, we pair human senders with
LLM receivers in Study 2. Because LLMs can either answer test
cases directly or use the descriptions to produce code, we measure
the performance of the LLM on both objectives across both studies.

The results from the two studies largely complement each other.
For example, we find that individuals with programming experi-
ence tended to be more successful at communicating IPTs to both
other humans and LLMs. However, we also find that the effect of
programming experience was often complemented by, or secondary
to the effects of, examples. However, programmers also exhibited
certain different behaviors around examples (e.g., being more likely
to send them) and interactivity (e.g., being less likely to interact)
compared to non-programmers.

Finally, we investigate the types of interactions that are beneficial
when communicating a task in English prose. In general, requests
for clarification did not necessarily correlate with positive outcomes.
We also observe significant differences in the way that LLMs and
humans provide feedback. In particular, LLMs are much more likely
to initiate feedback and to provide multiple points of feedback than
humans. Further, LLMs occasionally generated feedback types that
were not observed in humans, such as copyediting an IPT for clarity.

2 Related Work
To our knowledge, three prior papers discuss end-user program-
ming using LLMs as a natural language interface. Two [27, 52]
focus specifically on end-user programming through spreadsheet

interfaces. In contrast, our study is focused on the open-ended com-
munication of a variety of computational tasks to enable end-user
programming. Similar to our work, Sarkar [50] posits that "genera-
tive AI will create qualitative and quantitative expansions in the
traditional scope of end-user programming." This accurately sum-
marizes the motivation of this paper; however, unlike the author we
perform extensive experimentation to better understand how and
why this might be achieved. Due to the dearth of directly related
empirical work, we discuss related work on interfaces for end-user
programming (Section 2.1) and code generating LLMs (Section 2.2).

2.1 End-User Programming
Over the past few decades, there has been substantial interest in
designing systems and interfaces that empower end users with-
out training or experience in computer programming to express
computational tasks [25, 34]. Many systems for end-user program-
ming rely on graphical user interfaces and visual programming [33]
rather than forcing users to memorize complex syntax. For instance,
both the Blockly [14] and Scratch [44] languages let users express
programs by connecting blocks and include fundamental program-
ming concepts like loops and conditionals, but present them graph-
ically [44]. Similarly, trigger-action programming gives users a
graphical user interface for defining event-driven rules [17, 59] and
has been popularized in recent years via commercial services like
Zapier [43] and IFTTT [30, 60]. Current instantiations of trigger-
action programming enable end users to define automations in
domains including smart homes [59, 65, 67], robots [2, 24], social
media [60], and workplaces [66]. Other systems, such as prototypes
for creating web mashups [63], ask users to specify workflows
graphically. More broadly, a recent literature survey [4] noted over a
dozen types of end-user programming interfaces discussed in the lit-
erature, including gesture-based, template-based, and spreadsheet-
based interfaces. Another recent literature survey [21] character-
ized these interfaces more abstractly as block-based, icon-based,
form-based, or diagram-based.

While natural language has long been discussed as an interface
for end-user programming [4], we expect that the recent advances
in LLMsmay reflect an inflection point in enabling natural language
to be practical in general domains for end-user programming. We
note that prior work on enabling natural language as an effective
programming interface is largely complementary to this study, as
we focus on IPTs more broadly rather than specific tasks. As such,
strategies such as clearly mapping user intent to specific commands
(and clearly providing feedback based on the affordances of the
system) may be overly restrictive when one works with an LLM, as
the space of successful inputs are much larger and the workloads
more diverse [26, 31]. To accommodate this diversity of inputs, we
focus on how non-technical end users and trained programmers
express IPTs in natural language, evaluating what characteristics
of the sender, the description they write, and the instructions they
were given impact the ability of humans and LLMs to interpret these
descriptions. To our knowledge, aside from the small number of
papers mentioned above, prior work has not focused on LLM-based
natural language interfaces for end-user programming, though
concurrent work prototyped a system for doing so in the narrower
context of robot programming [20].

How Humans Communicate Programming Tasks in Natural Language. . . CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Figure 1: ChatGPT provides a chatbot-based interface that
can be used to communicate IPTs.

Programming by demonstration (PbD) or by example has also
long been studied as a type of end-user programming [33]. While
not our main focus, we test a condition in which senders are encour-
aged to augment their natural language description with example
test cases, essentially following the PbD paradigm.

2.2 Code Generators
This section discusses the technical origins of code generating LLMs
(Sec 2.2.1), their usage as programming support tools (Sec 2.2.2),
and their usage in the context of programming education (Sec 2.2.3).
Hereafter, we use the term code generators to refer specifically to
code generating LLMs.

2.2.1 Technical Origins. The relationship between code and natural
language was brought to the forefront of research attention during
the development of GPT-3 [5]. Researchers found that after being
exposed to code during training, the model could produce new code
with startling clarity. This exciting result motivated researchers
at OpenAI to further train, or fine-tune, GPT-3 on public GitHub
repositories. This resulted in Codex, an LLM specifically designed
to generate code [7]. Codex has since been incorporated into the
backend of Github Copilot and iterated upon considerably. Other
companies, such as Google and Meta, have similarly produced their
own LLMs capable of high performance on coding tasks: Gemini
and Code Llama, respectively [15, 48].

Modern LLMs are trained to produce the most likely next bit
of text, or token, that should follow an input string [5, 15, 36, 42,
57, 62]. This enables humans to interact with, or prompt, LLMs
by supplying them with input strings. Because code-generating
LLMs are trained on both natural language and code, they can be
prompted with both natural language and/or code. For example, a
user may prompt the model, “Write a line of Python that checks if a
number is even or odd”, or “is_even = .” In either case, the model
should produce an appropriate completion. Prompting has led to
LLMs being coupled with a UI and adopted as interactive tools.
These tools may be fully integrated into an IDE, such as Github
Copilot, or stand alone as web apps as in the cases of ChatGPT
(Figure 1) and Code Llama (Figure 2).

2.2.2 Code Generators as Programming Support Tools. Understand-
ing LLMs as programming support tools has primarily been done

Figure 2: Meta Code Llama’s interface is a widget that delin-
eates between the prompt (top) and response (bottom).

through two lenses: characterizing the human-LLM interactions
themselves or characterizing the correctness of produced code.
Taking the former route, Lee et al. [22] develop an open-ended
framework to understand human-LLM interactions across various
tasks. However, many others adopt a more grounded approach
towards understanding human-LLM interactions. Liu et al. [27], for
example, develop a method of scoping natural language inputs to
an LLM called “grounded abstraction matching”, where a natural
language description is mapped to specific system actions and then
returned to the user for review. McNutt et al. [28] similarly map
open-ended text to specific outcomes by characterizing the poten-
tial design space for notebook-based code assistants, noting that
the most useful interfaces differ based on the task at hand. Similarly,
Ferdowsi et al. [11] explore how an end-user inspection tool for
LLM code in a spreadsheet might be designed in order to promote
trust in the system. Others [18, 19, 29, 61] primarily investigate user
perceptions as they work collaboratively with programming LLMs,
with Ross et al. [46] particularly focusing on how different inter-
faces affect user satisfaction. One common theme among this work
is that users’ self-perception of productivity is often a misleading
metric: users often do not work faster or produce correct code at
a faster rate than control groups. This observation has critical im-
plications for theoretical work advocating for self-perception as a
metric for usability [56]. In contrast to these efforts to clearly scope
LLM inputs to specific affordances, our work broadens the scope of
inquiry. Namely, our study investigates the workloads themselves—
our object of study is any self-contained computational task, which
prevents us from necessarily tying the LLM’s output to any specific
system or affordance within.

Yet other work explores broad usability issues with prompting.
Zamfirescu et al. [64] investigate LLM prompting by non-expert
users, finding that when allowed to directly prompt models, users
tended to over-generalize and prompted the models opportunisti-
cally, rather than systematically. Critically, Drosos et al. [9] find
that even when researchers acted as a direct intermediary between
primarily skilled, highly educated participants, those participants
would still sometimes struggle to clearly articulate their queries.
Difficulties of clearly forming intention are further theorized about
in Sarkar’s “intention is all you need” [51], which speculates that
intention is a key prerequisite for using a GenAI tool. Our work
expands on these broad ideas by performing a large scale empiri-
cal study specifically in the context of end-user programming (in
contrast to Zamfirescu et al. [64]), and by providing evidence specifi-
cally in the domain of end-user programming to examine the theory
that Sarkar [51] raised concurrently to this work.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Pickering et al.

Over-generalization re-emerged as a problem in the area of
model prompting for code repair, as explored by Bajpai et al. [3],
who found that they needed to precisely scope the model’s feed-
back for effective debugging to occur; otherwise, the model would
fail to precisely pinpoint the issue. Vaithilingam et al. [61] relat-
edly investigated usability aspects of code-producing LLMs, finding
that users struggled to recover from incorrect or confusing code
generated from the LLM. This echoes work in the security space in-
vestigating bugs—particularly security vulnerabilities—introduced
by LLMs [38, 39, 49]. Those researchers generally find that the
LLM does produce insecure code, yet the model does not introduce
security vulnerabilities at a rate greater than humans [49]. While
our work implicitly considers similar questions (“What if the LLM
provides an output, such as feedback, that superficially appears
correct and useful but actually misleads the end user?”) our focus
is not on subtle ways that the code produced may differ from users’
expectations. We instead focus on factors that affect both human
and LLM understanding of descriptions of a computational task.

Finally, natural language processing (NLP) researchers have
broadly investigated LLM correctness during programming with-
out human interaction. In contrast to self-perception, usability,
or formal correctness metrics, a common NLP method of deter-
mining LLM code correctness is the notion of functional correct-
ness, which states that code is correct if it passes associated unit
tests [7, 15, 47, 48]. While model developers have primarily con-
sidered code correctness during model development, others have
examined the quality of produced code afterwards [10, 32, 35, 55].
Our work is inspired by functional correctness and similarly utilizes
test cases to check participant understanding and code correctness.

2.2.3 Code Generators and Programming Education. Some work
has explored the application of code generators to programming
education motivated by concerns that students may use the genera-
tors to complete their assignments [45]. Approaches have stemmed
from evaluating code generators on introductory programming
tasks to determine the extent to which they may be used either for
cheating or as educational support tools [12, 13, 53]. Researchers
generally found that a vast majority of auto-generated program-
ming exercises and code explanations were sensible and ready to
use except for minor mistakes that could easily be corrected by
an instructor. These results imply great potential for code genera-
tors in creating introductory programming course material, as the
generator’s abilities will likely improve over time.

3 Study 1 Methods
We first conducted an online study to understand human-to-human
IPT communication in prose. We recruited participants of varying
programming expertise and had them complete a survey. We then
directed them to our custom-built web app, where they were paired
with one another in real time. One member of the pair would then
communicate an IPT to the other member. After each IPT commu-
nication, each member of the pair answered four test cases relevant
to that IPT. Participants then completed another survey.

3.1 Recruitment and Demographic Survey
We recruited 242 participants from the Prolific crowdworking ser-
vice [41]. We required participants to be (1) 18+ years old, (2) live

in the United States, (3) speak English fluently, and (4) have com-
pleted 20+ Prolific studies with a 95%+ approval rating. During
recruitment, we reserved approximately half the slots on Prolific
to users who self-reported programming experience. We compen-
sated participants $8.00 USD either if they completed the study
or if they were unable to complete the study due to no fault of
their own. In the latter case, we compensated participants either if
they were not paired with another crowdworker within 20 minutes
(see Section 3.2) or if their assigned partner became unresponsive.
Unresponsiveness was detected by our web app’s interface. The
criteria for being marked as unresponsive were either failing to
move one’s mouse or make a keystroke for ten continuous minutes
or closing the study window and not rejoining within five minutes.

Our study was approved by the University of Chicago IRB. Par-
ticipants were first directed to an initial survey with standard de-
mographic questions (Appendix I.1). After completing the initial
survey, they were redirected to our web app.

3.2 Pairing and Conditions
We first used our web application to pair participants with each
other. Each participant stayed on a waiting screen until another
participant was redirected to the same screen, at which point they
were paired. The first member of the pair to land on the waiting
screen was assigned the role of sender, who describes an IPT in
prose. The second was assigned the role of receiver, who interprets
the sender’s rephrasing. Assigning the study roles in this way en-
sured that the sender was assigned in a round-robin manner based
on the queue at the waiting screen.

We also wanted to explore the effects of various design elements,
such as if adding an affordance by which receivers could ask ques-
tions about the IPT would help communication, as well as what role
examples play in IPT communication. We used a between-subjects
design to explore these design elements, assigning the experimen-
tal condition at the moment of pairing. Each pair of participants
was assigned in a round-robin manner to either the interactive
condition or non-interactive condition. In the interactive con-
dition, the receiver could clarify the sender’s IPT by pressing a
button to open a chat window. This affordance was removed for
the non-interactive condition. We also randomly assigned each pair
to either the examples condition or no-examples condition. Five
examples were presented to the sender in the examples condition,
two of which captured edge cases. The sender was also asked to in-
clude their own examples in the IPT rephrasing. In the no-examples
condition, the sender was not provided examples.

3.3 Primary Study Task
The main study task was for the sender to describe an IPT in prose
to the receiver. From this, we could then investigate if the com-
munication was successful. A key challenge we faced in designing
our study was that we needed to communicate a specific IPT to
the sender in a way that would minimally influence the way they
described that IPT in prose. This is because we hypothesized that
the way that senders would structure their descriptions may have
an effect on communication success. While presenting an IPT in
code and asking the sender to describe it in prose might be feasible
if all senders were computer programmers, we specifically wanted

How Humans Communicate Programming Tasks in Natural Language. . . CHI ’25, April 26–May 01, 2025, Yokohama, Japan

to investigate the benefits of programming experience. We thus
decided to present the IPT to senders in prose and to omit any
computer science jargon from the IPT. However, since the senders
were also writing prose, we needed to ensure that they would not
simply reiterate verbatim the prose IPT we provided them.

To address these challenges, we decided to give senders a verbose
and context-specific prose description of each IPT in an interface
element that prevented copy-pasting. We term this the verbose
description. By verbose, we mean that we included sentences that
provided no new information related to the fundamental computa-
tional task in the prose description. Similarly, by context-specific,
we mean that the IPT itself is couched in a specific real-world situa-
tion rather than a pure mathematical representation. We hoped that
both verbosity and the context-specific nature of these descriptions
would both discourage copying our description (due to the quantity
of text) and force participants to more deeply consider what the
fundamental computational task was. We note that work conducted
in parallel to ours also discussed verbosity as a technique [27].
Specifically, those researchers employed verbosity in conjunction
with circumlocution, rather than our tactic of increasing context.

As an example of phrasing an IPT to be verbose and context-
specific, consider the IPT of returning the maximum value in a
list. The pure mathematical representation of this IPT could simply
be “return the maximum value of some numbers.” However, the
verbose description of this IPT would add the real-world context
of finding the maximum number of days late someone could pay
their rent when comparing apartments. Similarly, we would include
the irrelevant information of the specific city the individual was
moving to, why they want to pay their rent late, and the fact that
the apartments were all similar.

Because we write our IPTs in this manner, our instructions to
senders asked them to rewrite the task more simply and more gen-
erally (i.e., not specific to a context), producing what we termed the
sender’s rephrasing. We gave participants the sample of rewriting
“sort a list of milk brands. . . ” as “sort a list of words” to clarify what
it means to be general.

3.3.1 Selection of IPTs. We considered IPTs from a number of
sources because no work to date has established which IPTs might
be broadly representative of end-user programming tasks. The
intuition here was to draw inspiration from how LLMs, experi-
enced programmers, and beginner programmers had their pro-
gramming competence measured. We specifically looked at four
popular LLM benchmarks (HumanEval, APPS, MBPP, and BigBench
datasets [1, 7, 16, 54]), a popular interview prep tool (LeetCode [23]),
and an introductory programming course (MIT [6]). While we were
inspired by the tasks from all corpora, we chose to ultimately only
pull tasks directly from HumanEval, which was used to bench-
mark Codex [7]. We chose problems from HumanEval because they
were largely nontrivial, self-contained, and did not require formal
training to complete. However, HumanEval is a very popular LLM
benchmark—pulling IPTs exclusively fromHumanEval runs the risk
of us testing IPT communication to LLMs for IPTs that the LLMs
may have been trained on or otherwise optimized to correctly solve.
To mitigate this, we developed half of our IPTs ourselves.

We selected IPTs of varying difficulty because more complex
IPTs may be harder to communicate. On the simplest end, an IPT

might be simply finding the maximum element in a list. At the
other extreme, one may need to describe a custom math function.
We then rephrased each IPT as described in Section 3.3 to create
their verbose description. We finally note that while we did not
consciously pull any IPTs from datasets other than HumanEval,
some of our IPTs exist in other datasets due to their generic nature.
An example of this is our eighth IPT, which asks if a string is a
subsequence of another string [7, 23]. We believe this heavy overlap
with problems in other testing suites is a good indicator that our
selected IPTs are common programming subtasks. A summary
of our chosen IPTs is shown in shown in Figure 14. The full IPT
descriptions and their test cases are available in Appendix B.

3.4 Interface
After the sender and receiver are paired, the main study activities
of communicating IPTs can occur. Critically, we do not distinguish
between writing instructions to complete a task versus describing
the task itself. This is intentional because we posit that any method
of communicating an IPT that ultimately results in correct code or
correct understanding is sufficient. Each participant was shown a
view for communicating IPTs customized to their role and condition.
The goal of the sender’s view was to present the IPT they would
have to rephrase and to give them the space to rephrase it. To this
end, the sender’s view (Figure 3) contained the verbose description
of the IPT (gray box), the task instructions (below the gray box), a
text editor in which the sender would rephrase the IPT (black), and
a submit button. Senders assigned to the examples condition were
also given examples along with the verbose description. They were
told to include their own examples when rephrasing the IPT.

Correspondingly, the goal of the receiver’s view was to present
them with the sender’s rephrased IPT and potentially to allow
them to respond to the rephrasing. To this end, the receiver’s view
(Figure 4) contained study instructions, a non-editable text box
where the sender’s rephrased IPT appeared, and a button to accept
the rephrased IPT. The receiver could optionally iterate with the
sender on the wording of the rephrasing in the interactive condition.
A button to reject the sender’s rephrased IPT was added in the
interactive condition for this purpose. Rejecting the rephrased IPT
opened a text box for the receiver to explain what they found
unclear. A chat window (Figure 5) then opened for both the sender
and receiver to optionally further discuss the receiver’s request for
clarification. Finally, we allowed the sender to optionally edit what
they had written in response to the receiver’s request. We make
this optional in the case that the clarification is small enough that
no changes to the sender’s IPT rephrasing needs to be made (e.g.,
Receiver: “What test cases will I see?” Sender: “I don’t know that
information.”) Once the sender finished making edits, they pressed
a button to send the edited IPT back to the receiver. The receiver
could again accept or reject the modified IPT, repeating this cycle
of feedback as many times as the receiver felt necessary.

Once the receiver accepts the sender’s IPT, we check for under-
standing on the part of both the sender and receiver. We do this
by having each participant independently answer four test cases
relevant to the IPT. For each test case, the participant supplies the
expected output for an input. To ensure that participants are not
ultimately quizzed on their memory, we provide the version of the

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Pickering et al.

Table 1: Short descriptions of the 12 IPTs we tested in Study 1. Appendix B contains the full text given verbatim to senders.
Name Short Summary of the IPT

max Given a list of numbers, report the max.
sum_pos Given a list of numbers, report the sum of the positive numbers in the list.

reignfall Given a string containing As, Bs, and Cs, count the number of As and Bs, reading from left to right. Stop counting once a C is reached. If there are more
Bs than As once the first C is reached, report B. Otherwise, report A.

palindrome Report T if a string is a palindrome. Otherwise, report F.
str_diff Given two strings, report which letter has been added to the first string to arrive at the second.

exact_chg Given three numbers (Small, Big, Goal), report T if Small times 1 plus Big times 5 equals Goal. Otherwise, report F.
find_sum Given a list of numbers and a target number, report what pair of numbers from the list have a sum equal to the target. Report the larger number of the

pair first. If there is no pair with sum equal to target, report [].
num_even Given a list of numbers, report how many even numbers are in the list.

is_subseq Given two strings, report T if the first string is a subsequence of the other. Otherwise, report F.
xyz Given three numbers (x, y, z), if y > z, report the pair of numbers: [x + z, 0]. Otherwise, report the pair of numbers: [x + y, z - y].

rmv_dup Given a list, report the list after all instances of duplicates are removed, preserving the relative ordering.
fizzbuzz Given some number n, count and report the number of times the digit 7 appears in whole numbers less than n that are divisible by 11 or 13 (or both).

IPT that they saw on the previous screens. That is, the sender is
provided the verbose description and the receiver is provided the
sender’s IPT rephrasing. We fix the test cases for each IPT. However,
we randomize the order in which each participant sees them. To
test both basic understanding as well as mastery, we test a variety
of inputs. We formulate two of the test cases for each IPT to be
regular cases which test common, standard scenarios. The other
two cases are edge cases that test unusual scenarios. For example,
for the IPT of finding the maximum of a list, a regular case may be
the list “[1, 2, 3]” while an edge case could be “[0, 0, 0].”

After answering test cases, participants responded to two state-
ments on 7-point Likert scales: “I am confident my answers to the
test cases are correct” and “I am confident I fully understand the [IPT]
above.” After answering these questions, we consider the mem-
bers of the pair to have communicated one IPT. We repeat the IPT
communication process until each pair has communicated four
IPTs, with the participant roles (sender and receiver) and condi-
tion held constant. We randomize which four IPTs that each pair
communicates, as well as the order in which they see those IPTs.

3.5 Post-Task Survey
Our post-task survey (see Appendix I.2) focused on participants’
self-perception, such as whether or not they perceived the study
task to be difficult. We also use this survey to definitively classify
each participant as a programmer or a non-programmer using three
screening questions developed by Danilova et al. [8] and a fourth
that simply asks the programming languages in which the par-
ticipant is proficient. We count the fourth question as indicative
of programming experience as long as the participant types any
programming language. Participants who answer at least three
questions correctly are considered programmers. We also included
an attention check question; all participants answered it correctly.

3.6 Substituting LLMs For Human Receivers
We use data collected during our main study to perform an addi-
tional sub-study. This sub-study investigates if IPTs communicated
between humans can be used verbatim for successful IPT com-
munication to LLMs. Specifically, we took the final IPT phrasing
(post-interactivity if interaction was permitted) and fed it to a vari-
ety of LLMs. We use the same test cases as we did for humans to
measure LLM performance. However, unlike humans, LLMs can
either directly answer test cases or produce code. We consequently

Figure 3: Sender’s view in Study 1’s non-interactive condition.

measure LLM performance for both possibilities, and prompt each
LLM for each objective: once to directly answer test cases, and
once to produce code in the form of a Python function that imple-
ments the IPT. The written code is then run to answer test cases.
Our prompt to directly answer test cases is identical to the prompt
that we use for human receivers, while the prompt to produce
code has an additional sentence: “Write a single Python function
which is an implementation of the procedure above.” We specifically
query GPT-4 (gpt-4-0613), Chat Llama (Llama-2 Chat 70B hf,
Llama-2 Chat 7B hf), Code Llama (CodeLlama 34B Instruct
hf, CodeLlama 7B Instruct hf), and Gemini (Gemini Pro 1.0)
due to their state-of-the-art performance [15, 37, 48, 58]. We use
default system messages and querying parameters for all models,
as provided in their documentation at the time of querying. When
models are directly answering test cases, we ensure that the test
cases follow the same order as the human receiver.

How Humans Communicate Programming Tasks in Natural Language. . . CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Figure 4: Receiver’s view in Study 1’s interactive condition.

Figure 5: Chatbox shown if a receiver rejects the description.

3.6.1 LLM Code Correctness. We observe that there is no guaran-
tee that an LLM will produce a correct function header. Namely,
LLMs will sometimes produce a function that takes too few or too
many arguments. Rather than indiscriminately mark these cases
as incorrect, we first check if the IPT relies on its arguments being
in a certain order. If so, we simply count the produced function as
incorrect. However, the IPT is more or less agnostic to the order
of its arguments, such as IPT palindrome, we combinatorially try
all possibilities of formatting the test case such that the number
of arguments in the test cases is consistent with the number of
arguments in the LLM’s function header. For example, if the test
case took two inputs (x and y) and the function header only took
one input, we attempted to format the input as [x, y]. Finally, we
also mark code that takes excessively long to execute (>10 seconds)

or relies on input from the user as incorrect. We then run the pro-
duced code with all the possible input formats, and as long as one of
the inputs produces the expected output, we count the test case as
correct. Finally, at least one researcher manually verified the results
from code execution to ensure that the produced code legitimately
attempts to solve the test cases instead of simply guessing.

3.7 Data Analysis
We use linear regression models for our quantitative analysis. These
linear regressions enable us to report on each factor’s impact on
communication (e.g., the impact of age or the impact of being as-
signed to the examples condition) while controlling for other
factors. The dependent variable (DV) is the number of test cases
answered correctly by the sender, the receiver, or LLM. These re-
gression models’ independent variables (IVs) included the assigned
condition, the demographics and experiences of the sender and/or
receiver, as applicable, and which IPT was being tested. Because
we wanted to investigate the extent to which each of these factors
(IVs) impacted the success of IPT communication, we chose not
to perform model selection, instead reporting coefficients and p-
values for all IVs. For our regression models, we merged smaller
categories and always used the largest category as the baseline.

However, we sometimeswanted to examine specific sub-questions
(e.g., comparing receivers’ performance based on specific charac-
teristics of the IPT description they saw). For these one-off compar-
isons between two groups, we used Mann-Whitney U tests (abbre-
viated MWU when reporting p-values) as the number of test cases
answered correctly does not follow a normal distribution, making
the more common t-test inappropriate. For all statistical tests, we
set 𝛼 = .05, though we also report potentially relevant results above
this threshold as appropriate.

We also perform qualitative analysis to assess the characteris-
tics of sender’s IPT rephrasings, examples, and interactions. Two
researchers inductively developed a codebook following a thematic
analysis approach. Rephrasings, examples, and interactions all had
separate codebooks, although they were all developed inductively.
The researchers regularly met to discuss if new codes needed to be
added. After coding, the researchers met and resolved all differences
between their respective codes. We grouped codes with under five
occurrences with thematically similar codes.

To support both open science and potential follow-up work,
we have publicly released de-identified versions of participants’
descriptions in a GitHub repository [40].

4 Study 1 Results
We now describe the results of our first study and LLM experiments.

4.1 Participants
Initially, 258 participants completed Study 1. However, we found ev-
idence that a few participants may have used ChatGPT to rephrase
IPTs. Two researchers independently coded responses for ChatGPT
usage based on indicators like beginning an IPT with “Certainly!
Here’s a simplified algorithm procedure” as well as idiosyncratic
behaviors, like listing all multiples of 11 and 13 from 0 to 1000
without being asked. Based on consensus from the two researchers,

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Pickering et al.

0 2 4 6 8 10 12 14 16
Number of Correct Test Cases

Sender

Receiver

Figure 6: The distribution of how many of the 16 test cases
each sender and receiver answered correctly.

we discarded the 8 pairs who seemed to use ChatGPT, leaving 242
individuals as our data set.

Among these 242 participants, 10.3% did not have a college de-
gree, 34.3% held an associate’s degree, 37.2% held a bachelor’s de-
gree, and 18.2% held a graduate degree. In terms of age, 12.4% of
participants were 18–24 years old, 35.5%were 25–34 years old, 27.3%
were 35–44 years old, and the remaining 9.5% were 45 years old or
older. Finally, 52.5% of participants identified as male, 42.6% iden-
tified as female, and a total of 5.0% identified as non-binary/third
gender, self-described, or preferred not to say.

While we recruited our sample using Prolific’s platform filters
such that slightly over half of the participants reported prior pro-
gramming experience and slightly less than half did not (Section 3.1),
a number of self-reported programmers fared poorly on the stan-
dardized programming quiz [8] we administered (Section 3.5). Based
on both this quiz and self-reported experience, we categorized
72/242 participants (29.8%) as programmers and the rest as non-
programmers. Of the 72 programmers, 33 were senders while the
other 39 were receivers.

4.2 Overall Correctness
Recall that each pair was randomly assigned four IPTs with four
test cases each. Across their assigned IPTs, participants averaged
9.4/16 test cases correct (58.9%), with a median of 10/16 (62.5%) and
standard deviation of 4.4. However, this average does not account
for the difficulty of the IPT, the participant’s role, type of test case,
or experimental condition. As we detail in the coming sections,
each factor impacts correctness.

4.2.1 Senders vs. Receivers. Senders, who read the verbose descrip-
tions we provided, answered more test cases correctly than re-
ceivers, who read their corresponding sender’s IPT rephrasing. As
Figure 6 illustrates, senders answered an average of 10.6/16 test
cases correctly (66%), while receivers answered an average of 8.3/16
correctly (52%). This difference was significant (MWU, 𝑝 < .001).

4.2.2 Regular vs. Edge Cases. Participants did slightly better on
regular test cases than edge cases, as shown in Figure 7. The x-axis
is out of 8, as each participant encounters four IPTs, each with two
edge cases. This difference was also significant (MWU, 𝑝 = .030).

4.2.3 Performance By IPT. Participants’ performance varied with
IPT difficulty (Figure 8). Participants answered the most test cases
correctly for sum_pos (mean: 3.1/4, median: 4) and the least for
fizzbuzz (mean: 1.1, median: 1.0). From this, we speculate that
computationally simple IPTs are simple to communicate.

0 1 2 3 4 5 6 7 8
Number of Correct Testcases

Regular Cases

Edge Cases

Figure 7: The distribution of howmany of the 8 regular cases
and 8 edge cases each participant answered correctly.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of Correct Testcases

sum_pos
max

rainfall
palindrome

str_diff
exact_chg
find_sum

num_even
is_subseq

eat
rmv_dup
fizzbuzz

Figure 8: The distribution of how many of the 4 test cases for
each IPT participants answered correctly.

Further, we find some evidence that participants tended to strug-
gle with IPTs that inherit subtle English language ambigui-
ties even if the IPT is computationally simple. For example,
the num_even IPT, which requires one to return the count of even
numbers in a list, proved challenging for participants. Many un-
successful participants returned all even numbers in the list, rather
than the count of the even numbers in the list.

4.3 Regressions
In the remainder of this section, we report the results of a series of
linear regression models (see Section 3.7). For each, the DV is how
many of the four test cases were answered correctly for a given
IPT. When presenting the IVs, such as the relevant participant’s
demographics and assigned condition, we report 𝛽 (the coefficient)
and the p-value for that IV. For categorical variables, as most of our
IVs are, 𝛽 indicates howmanymore of the four test cases on average
were answered correctly relative to the baseline category. Note that
because the DV is defined in this way, any statistically significant
effects are additive. For example, if the sender is a programmer
(𝛽 = 0.45) who is in the examples condition (𝛽 = 0.60), that sender
is likely to get 1.05 more test cases correct on average than a non-
programmer in the condition without examples.

Table 2 presents our regression results for senders answering test
cases based on our verbose descriptions, while Table 3 presents the
corresponding regression results for receivers answering test cases
based on their paired sender’s description. We note that the charac-
teristics of the person rephrasing the IPT may impact the quality
of the rephrasing. Correspondingly, the regression for receivers

How Humans Communicate Programming Tasks in Natural Language. . . CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Table 2: Linear regression whose dependent variable indi-
cates how many of the four test cases senders answered cor-
rectly in Study 1 based on our verbose descriptions. Adjusted
𝑅2 = 0.302.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 3.266 0.250 13.063 <.001

Condition: Examples Non-examples 0.598 0.121 4.951 <.001

Condition: Interactive Non-interactive 0.097 0.120 0.813 .417

Sender is Programmer Non-programmer 0.450 0.141 3.203 .001

Sender Age 18–24 25–34 0.086 0.207 0.416 .678
Sender Age 35–44 25–34 0.010 0.144 0.068 .945
Sender Age 45+ 25–34 -0.682 0.168 -4.054 <.001

Sender is Non-male Male 0.002 0.126 0.018 .986

Sender Degree: None Bachelor’s -0.013 0.141 -0.096 .924
Sender Degree: Associate’s Bachelor’s 0.076 0.211 0.361 .718
Sender Degree: Graduate Bachelor’s 0.309 0.173 1.790 .074

IPT: max sum_pos -0.197 0.272 -0.725 .469
IPT: num_even sum_pos -1.080 0.289 -3.742 <.001
IPT: reignfall sum_pos -0.117 0.306 -0.383 .702
IPT: palindrome sum_pos -0.616 0.279 -2.206 .028
IPT: find_sum sum_pos -1.036 0.289 -3.582 <.001
IPT: rmv_dup sum_pos -2.105 0.277 -7.607 <.001
IPT: str_diff sum_pos -0.791 0.280 -2.826 .005
IPT: is_subseq sum_pos -0.927 0.283 -3.280 .001
IPT: exact_chg sum_pos -0.659 0.275 -2.400 .017
IPT: fizzbuzz sum_pos -2.410 0.279 -8.629 <.001
IPT: xyz sum_pos -1.436 0.290 -4.957 <.001

also includes demographic IVs of the sender. Full demographic
correlations with test case performance are shown in Appendix F.

Controlling for all other factors represented by IVs, we found
that the number of test cases the receiver answered correctly was
significantly correlated with the number of test cases the sender
answered correctly (𝛽 = 0.306, 𝑝 < .001). Intuitively, this factor indi-
cates that senders who better understood the IPT as presented
in our verbose description were better able to rephrase and
communicate that IPT to the receiver. Further, echoing Sec-
tion 4.2.3, we found that both senders and receivers answered fewer
test cases correctly for five of the IPTs as compared to our baseline—
num_even, find_sum, rmv_dup, fizzbuzz, and xyz—compared to
our regression baseline, max.

4.4 Programmers vs. Non-Programmers
We found that senders with programming experience answered on
average 0.45 more of the 4 test cases per IPT correctly than senders
without programming experience (𝛽 = 0.450, 𝑝 < .001). While
programming experience clearly helped understanding, its
advantage was not overwhelming, representing on average less
than half a test case difference per IPT.

We observed a slightly different effect for receivers. Receivers
with programming experience answered on average 0.25 more of
the 4 test cases per IPT correctly than receivers without program-
ming experience, and this effect was not statistically significant
(𝛽 = 0.254, 𝑝 = .082). What mattered somewhat more was
whether the senderwhowrote the description for the receiver
had programming experience. Receivers whose corresponding
sender had programming experience answered on average 0.43
more of the 4 test cases per IPT correctly than receivers whose
corresponding sender did not (𝛽 = 0.433, 𝑝 = .006).

Table 3: Linear regression whose dependent variable indi-
cates how many of the four test cases receivers answered
correctly in Study 1 based on the sender’s description. We
included independent variables about both the receiver (who
answered test cases) and the sender (who wrote the descrip-
tion). Adjusted 𝑅2 = 0.285.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 1.645 0.360 4.570 <.001

Condition: Examples Non-examples 0.249 0.142 1.756 .080

Condition: Interactive Non-interactive 0.061 0.129 0.473 .637

Receiver is Programmer Non-programmer 0.254 0.146 1.743 .082

Receiver Age 18–24 25–34 -0.535 0.216 -2.473 .014
Receiver Age 35–44 25–34 -0.316 0.186 -1.699 .090
Receiver Age 44+ 25–34 -0.391 0.169 -2.318 .021

Receiver is Non-male Male 0.176 0.131 1.346 .179

Receiver Degree: None Bachelor’s -0.014 0.171 -0.084 .933
Receiver Degree: Associate’s Bachelor’s 0.132 0.210 0.627 .531
Receiver Degree: Graduate Bachelor’s -0.281 0.187 -1.502 .134

Sender: # Test Cases Correct – 0.306 0.050 6.104 <.001

Sender is Programmer Non-programmer 0.433 0.155 2.786 .006

Sender Age 18–24 25–34 -0.701 0.242 -2.893 .004
Sender Age 35–44 25–34 -0.181 0.157 -1.149 .251
Sender Age 45+ 25–34 -0.211 0.194 -1.083 .279

Sender is Non-male Male -0.226 0.139 -1.632 .103

Sender Degree: None Bachelor’s 0.255 0.159 1.608 .109
Sender Degree: Associate’s Bachelor’s 0.260 0.227 1.146 .253
Sender Degree: Graduate Bachelor’s 0.477 0.191 2.499 .013

IPT: max sum_pos -0.038 0.287 -0.132 .895
IPT: num_even sum_pos -0.693 0.312 -2.225 .027
IPT: reignfall sum_pos -0.088 0.325 -0.271 .787
IPT: palindrome sum_pos -0.177 0.297 -0.595 .552
IPT: find_sum sum_pos -0.622 0.310 -2.006 .045
IPT: rmv_dup sum_pos -0.988 0.312 -3.168 .002
IPT: str_diff sum_pos -0.093 0.299 -0.310 .757
IPT: is_subseq sum_pos -0.268 0.303 -0.884 .377
IPT: exact_chg sum_pos -0.181 0.293 -0.617 .538
IPT: fizzbuzz sum_pos -1.030 0.321 -3.205 .001
IPT: xyz sum_pos -1.119 0.315 -3.555 <.001

In short, we conclude that it is feasible for non-programmers to
both describe IPTs in natural language and interpret others’ natural
language descriptions of IPTs with only slightly worse performance
compared to programmers. However, having programming expe-
rience affects both the individual’s depth of understanding and
ability to successfully communicate the IPT. Figure 9 plots these
phenomena per participant (summing test cases across all 4 IPTs
each participant saw). However, observing the difference in distri-
butions is insufficient to understand why programmers do better.
To understand what programmers do that end users do not, we look
at both examples (Section 4.5) and interaction patterns (Section 4.6).

4.5 The Role of Examples
Senders who were shown examples alongside their verbose
descriptions answered on average 0.60more of the 4 test cases
per IPT correctly than senders not shown examples (𝛽 = 0.598,
𝑝 < 0.001). However, we note that only 32 of the 48 senders (66.7%)
randomly assigned to our examples condition (in which they were
asked to provide examples to the receiver) actually did so. Because
all senders who were assigned to the examples condition were
shown examples, but only two-thirds of them sent examples despite

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Pickering et al.

0 2 4 6 8 10 12 14 16
Number of Correct Test Cases

Programmer
Sender

Programmer
Receiver

Non-Programmer
Sender

Non-Programmer
Receiver

Figure 9: The distribution of how many of the 16 test cases
(across IPTs) each participant answered correctly based on
role and programming experience.

0 2 4 6 8 10 12 14 16
Number of Correct Test Cases

Asked and
Sent?

Asked and
Not Sent?

Not Asked,
Not Sent

Figure 10: Receiver performance based onwhether the sender
included examples. Only one pair sent examples when they
were not asked to; that pair is not shown.

all passing our study’s attention check, we speculate that examples
may simply be hard for individuals to formulate.

Whether the sender chose to send examples to their correspond-
ing receiver was not significantly correlated with how many test
cases their receiver answered correctly. Figure 10 plots receiver per-
formance when their corresponding sender included one or more
examples in their IPT rephrasing, summing across all four IPTs each
participant saw. While sending examples was not significant, we
found that the sender reusing one or more examples was significant.
On average, the receiver got 0.75 more test cases wrong when the
sender reused one or more examples (𝛽 = −0.750, 𝑝 = 0.047). We
include the full regressions over examples in Appendix H.2.

4.5.1 Do programmers and non-programmers have different be-
havior around examples? We first examine trends relating to the
quantity of examples. We found that programmers sent examples
at a greater rate when requested. Specifically, when looking at the
rephrasings of those assigned to the examples condition, 66.1%
(37/56) of programmers’ IPT descriptions contained examples, com-
pared to 48.5% (66/136) of non-programmers’ IPT descriptions.
When programmers and non-programmers sent examples, they ulti-
mately sent a similar number of examples: 2.73 examples on average
for programmers versus 2.75 for non-programmers. However, when
they did so, there was greater variance in the quantity of examples
that non-programmers sent (standard deviation: 1.65) as compared
to programmers (standard deviation: 1.24). Further, the median
number of examples sent was higher for programmers (median:
3) than non-programmers (median: 2). Curiously, we also found
that programmers tended to write IPTs with fewer entirely correct
examples (14/37, 37.8%) than non-programmers (28/66, 42.3%). We

speculate that this slight disparity may be due to the fact that pro-
grammers wrote a greater median number of examples per IPT and
were slightly more likely to include examples covering edge cases
than non-programmers (28.6% vs 21.3% of IPTs with examples).

Regarding the qualities of those examples, we found that pro-
grammers sent more legible examples. Specifically, programmers
were more likely to clearly format their examples such that each
example’s inputs and outputwere clear: 50.0% (28/56) of program-
mers’ IPTs had examples clearly formatted, compared to only 32.4%
(44/136) of non-programmers’ IPTs. Example reuse was slightly
more common for non-programmers. Specifically, 11.8% of non-
programmers (16/136) reused at least one example that we provided
to them in our verbose description, while 8.9% of programmers
(5/56) reused at least one example. Similarly, when they included
examples, non-programmers were more likely to have reused every
example from what we provided: 5.9% (8/136) of non-programmer
IPTs had entirely reused examples, while only one programmer
had an IPT with entirely reused examples (1.8%, 1/56). Finally, we
remark that both programmers and non-programmers included
explanations for the answers in their examples at roughly equal
rates: 14.3% of programmers’ IPTs (8/56) included explanations and
13.2% of non-programmers’ IPTs (18/136) included explanations.

We speculate that these results suggest that it is easier for pro-
grammers to create and express examples than non-programmers,
and they might intuitively understand that being able to clearly
delineate inputs and outputs is important when communicating
examples. However, neither group appears to be more inherently
predisposed to include explanations along with their examples.

4.6 The Impact of Interactivity
While we hypothesized that interactivity would help communica-
tion, we did not observe this to be the case.

Interaction was somewhat rare. While 64 of the 131 pairs
were assigned to the interactive condition, only 47 of those 64
pairs (73.4%) ever chose to interact. Further, pairs with at least one
programmer were 12.2% less likely to interact than pairs with no
programmers: pairs with one programmer interacted 65.6% of the
time, while pairs with no programmers interacted 77.8% of the time.

Interestingly, interaction did not appear to improve out-
comes for the receiver. Receivers who did not interact got on
average 0.47 more test cases correct than their senders (𝛽 = 0.473,
𝑝 = 0.42). We hypothesize this may be because receivers were more
likely to interact when the sender’s description was unclear.

4.6.1 What is a useful interaction? Because we observed interac-
tion to have minimal impact on the receiver’s ability to answer test
cases, we qualitatively analyzed the interactions that did occur to
understand why. Many interactions did not seem to clarify the IPT.
In response, two researchers inductively developed a definition for
useful interaction and repeatedly met to refine this definition until
they reached high levels of agreement (Cohen’s 𝜅 = 0.77). They
then qualitatively coded all procedures as useful or not, including
reasons why they were or were not useful. The researchers then
met and jointly resolved all differences.

Their ultimate definition of a useful interaction is one in which
at least one of the following happens: the sender makes the IPT
structure clearer in response (e.g., by adding headers to paragraphs);

How Humans Communicate Programming Tasks in Natural Language. . . CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Figure 11: A sankey diagram connecting themes of receivers’
clarification requests about senders’ IPT descriptions and
their associated outcomes. For visual clarity, we dropped all
request-outcome pairs that only occurred once.

the sender responds with new, relevant information; the interaction
clarifies the IPT’s inputs and/or output; or the sender and receiver
discuss the IPT in a way that clarifies ambiguities.

4.6.2 What clarification requests led to good outcomes? Receivers’
requests for clarification tended towards five main themes. Of the 84
requests, 14 (17.1%) clarified input/output pairs, such as the outcome
when given a certain edge case (8/14). Another 27 requests (33.0%)
asked about the characteristics of certain variables. For example,
for the IPT “report how many even numbers are in each number
sequence,” the receiver asked, “Even in terms of number count?
ie. [1223] = one because there are two 2’s. Or even in terms of the
number itself? Ie. [1223] = two because there are two 2’s.”

Other requests for clarification were less likely to lead to useful
outcomes. Another 9 requests (11.0%) asked about the IPT’s framing,
rather than information pertinent to the computational task itself.
An example for the find_sum task, framed as finding the right
lengths of scrap wood to make a door, was, “Do I have enough
wood glue for such a project?” Furthermore, 19 (23.2%) broadly
reported that the IPT was unintelligible, or that they were not clear
on what they should report or how they should do so. For example,
a participant wrote, “It seems very wordy and confusing. I still don’t
know what two numbers [...] to find or how I am supposed to do
that.” Finally, 13 requests (15.9%) did not neatly fall under the other
categories, including grammatical edits or confusion over math
symbols (e.g., confirming that ‘>’ means “greater than”).

Figure 11 summarizes how these requests mapped to outcomes.
Requests to clarify variables and I/O appear the most benefi-
cial to improving IPT communication. These requests led to
positive outcomes 48.1% and 61.5% of the time, respectively.

4.7 Communication to LLMs
Recall that we are ultimately focused on the possibility of LLMs
being an effective natural-language programming interface for end
users. To this end, we investigate if the IPT descriptions commu-
nicated between humans can also successfully communicate IPTs
to LLMs. To this end, we fed the same IPT descriptions written by
senders in our study to GPT-4, Gemini, and two variants each of

Table 4: Average performance of all tested LLMs and humans.
"Direct Answering" indicates that the LLMdirectly responded
to the test case, while "Code" indicates that the LLM produced
a Python function which was then run on test cases.

Directly Answering Writing Code
Test All Test All

Receiver Cases Correct Cases Correct

Human Participants 58.9% 25.6% - -
ChatLLaMA 7B 18.7% 2.9% 12.0% 6.0%
ChatLLaMA 13B 27.4% 4.3% 26.8% 17.1%
Code Llama 7B 33.4% 6.0% 32.8% 21.5%
Code Llama 34B 40.9% 9.3% 34.4% 22.5%
Gemini 27.1% 6.8% 38.3% 27.3%
GPT-4 59.8% 28.9% 45.6% 36.0%

Table 5: Linear regression with the dependent variable indi-
cating how many of the four test cases GPT-4 answered cor-
rectly in Study 1when directly answering. Adjusted𝑅2 = 0.292.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 2.444 0.292 8.374 <.001

Condition: Examples Non-examples 0.186 0.124 1.501 .134

Condition: Interactive Non-interactive -0.101 0.120 -0.841 .401

Sender: # Test Cases Correct – 0.327 0.046 7.042 <.001

Sender is Programmer Non-programmer 0.152 0.142 1.070 .285

Sender Age 18–24 25–34 -0.025 0.207 -0.120 .905
Sender Age 35–44 25–34 -0.104 0.144 -0.720 .472
Sender Age 45+ 25–34 -0.319 0.171 -1.869 .062

Sender is Non-male Male -0.122 0.126 -0.968 .334

Sender Degree: None Bachelor’s 0.096 0.141 0.684 .494
Sender Degree: Associate’s Bachelor’s 0.152 0.210 0.722 .471
Sender Degree: Graduate Bachelor’s 0.100 0.173 0.581 .561

IPT: max sum_pos -0.810 0.271 -2.986 .003
IPT: num_even sum_pos -0.997 0.292 -3.411 <.001
IPT: reignfall sum_pos -0.956 0.305 -3.131 .002
IPT: palindrome sum_pos -0.359 0.280 -1.280 .201
IPT: find_sum sum_pos -0.893 0.293 -3.053 .002
IPT: rmv_dup sum_pos -1.576 0.293 -5.380 <.001
IPT: str_diff sum_pos -0.885 0.282 -3.142 .002
IPT: is_subseq sum_pos -0.521 0.285 -1.826 .069
IPT: exact_chg sum_pos -0.666 0.276 -2.416 .016
IPT: fizzbuzz sum_pos -1.580 0.300 -5.262 <.001
IPT: xyz sum_pos -1.449 0.297 -4.887 <.001

Chat Llama and Code Llama. We then measured each LLM’s abil-
ity to answer test cases both when answering directly and when
producing Python code to do so (see Section 3.6). We found that
all LLMs except Gemini were more adept at answering test cases
directly, rather than producing code. With the exception again of
Gemini, models’ relative performance when directly answering test
cases correlated strongly with their ability to write code.

Table 4 compares the performance of these LLMs against each
other and against the human receivers. We observe that GPT-4,
Gemini, and Code Llama 34B demonstrated the best performance,
so we restrict our discussion to those models. GPT-4 performed
the most comparably to human receivers in aggregate, slightly
outperforming them. GPT-4 answered 59.8% of test cases correctly,
while human receivers answered 58.9% correctly. Furthermore, GPT-
4 produced code that passed all test cases 36.0% of the time.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Pickering et al.

Table 6: Linear regression with the dependent variable in-
dicating how many of the four test cases GPT-4 answered
correctly in Study 1 when producing Python code. Adjusted
𝑅2 = 0.301.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 2.363 0.337 7.022 <.001

Condition: Examples Non-examples 0.187 0.143 1.314 .190

Condition: Interactive Non-interactive -0.087 0.138 -0.634 .526

Sender: # Test Cases Correct – 0.332 0.054 6.202 <.001

Sender is Programmer Non-programmer 0.244 0.163 1.494 .136

Sender Age 18–24 25–34 0.244 0.239 1.024 .306
Sender Age 35–44 25–34 -0.074 0.166 -0.445 .657
Sender Age 45+ 25–34 -0.688 0.197 -3.497 <.001

Sender is Non-male Male -0.220 0.145 -1.516 .130

Sender Degree: None Bachelor’s 0.108 0.162 0.667 .505
Sender Degree: Associate’s Bachelor’s 0.280 0.242 1.153 .249
Sender Degree: Graduate Bachelor’s 0.369 0.199 1.853 .065

IPT: max sum_pos -1.757 0.313 -5.619 <.001
IPT: num_even sum_pos -0.395 0.337 -1.171 .242
IPT: reignfall sum_pos -0.912 0.352 -2.590 .010
IPT: palindrome sum_pos 0.105 0.323 0.327 .744
IPT: find_sum sum_pos -1.446 0.337 -4.287 <.001
IPT: rmv_dup sum_pos -1.809 0.338 -5.356 <.001
IPT: str_diff sum_pos -1.422 0.325 -4.378 <.001
IPT: is_subseq sum_pos -1.353 0.329 -4.117 <.001
IPT: exact_chg sum_pos -1.351 0.318 -4.251 <.001
IPT: fizzbuzz sum_pos -1.651 0.346 -4.769 <.001
IPT: xyz sum_pos -1.242 0.342 -3.632 <.001

Parallel to our regression models for humans, we also built re-
gression models for the LLMs. The body of the paper presents those
models for GPT-4, specifically when GPT-4 answered test cases di-
rectly (Table 5) and when GPT-4 wrote code (Table 6). The appendix
contains parallel tables for Code Llama (Tables 15–16) and Gemini
(Tables 17–18). From these regressions, we compare and contrast
LLM behavior to human receivers.

Models seemed to struggle with similar tasks as humans:
human receivers, senders, and all models struggled with
find_sum, rmv_dup, fizzbuzz, and xyz. Notably, the sender being
a programmer only had a statistically significant effect for Code
Llama 34B (𝛽 = 0.443when producing code) and Gemini (𝛽 = 0.317)
when producing code to answer test cases. The sender being a pro-
grammer was not ever statistically significant when the model was
directly answering test cases.

4.8 Study 1: Should LLMs Have Failed?
A natural question is whether an LLM should have answered the
test cases correctly given a sender’s rephrased description. Answer-
ing this question provides a sense of whether more advanced LLMs
would likely be able to answer those test cases correctly, or whether
the sender’s description was flawed. To this end, we qualitatively
code a random sample of 100 IPT descriptions from senders. Of
those descriptions, we judged that 45 contained all information
needed to solve both regular and edge cases. For those, the senders
answered 3.53/4 test cases correctly on average. GPT-4 performed
well in these cases, answering 3.24/4 test cases correctly when di-
rectly answering and 3.47/4 test cases correctly when producing
code. However, 33 of the 100 IPT descriptions contained none
of the necessary information to answer either regular or edge

cases for that IPT. GPT-4 performed surprisingly well given this
situation: 1.85/4 test cases were correct when directly answering,
and 1.27/4 when producing code. We further note that 9/100 descrip-
tions included no instructions on how to complete the IPT, while
11/100 were deemed incomprehensible by our expert coders. An ex-
ample of an IPT that was coded as both having no instructions and
as being incomprehensible is: “input-0-2-4-6-8 [line break] 2-4-6-8.”

We then examined other qualitative features of the descriptions.
We found a relatively even split between senders remembering to
include the requisite information necessary to answer all edge
cases (48/100) versus including none of that information (43/100).
Similarly, about a quarter of the descriptions (26/100) failed to
clearly define some information that was integral to the IPT. An
example of a description missing definitions is illustrated by the
statement, “Given a number of dollars, in the values Small and Big,
determine if you can provide an amount exactly equal to Goal.” The
sender failed to mention that “Small” is the number of $1 bills and
“Big” is the number of $5 bills. Relatedly, it was fairly common for
individuals to accidentally convey an ultimately different IPT than
the one we intended. For example, rather than convey “Report T if
it is possible to obtain the exact amount needed given some quantity
of $1 and $5 bills”, one sender accidentally communicated “[Report
T] if you have the exact amount needed.” We find that almost a third
(31/100) of descriptions ultimately conveyed a related, yet incorrect,
IPT. Further, 18/100 descriptions contained information extraneous
to the IPT, and this unsurprisingly seemed to correlate with poor
understanding on the part of the sender, who answered 1.72/4
test cases correctly on average for those descriptions. Conversely,
senders who wrote descriptions that had clear formatting (16/100)
tended to average 3.94/4 test cases correctly. We note that 13/100
descriptions were written in a procedural, step-by-step format.
Curiously, GPT-4 seemed to do worse when producing code for
these descriptions than when directly answering (2.38/4 vs. 3.08/4
test cases correct, respectively). Senders who wrote these step-
by-step descriptions seemed to understand the IPT, answering on
average 3.46/4 test cases correctly themselves.

4.9 Limitations
We note two key classes of limitations for our results. While our
IPTs were informed by common programming tasks, it is unclear
how representative they are of end-user workloads either now or in
a possible future in which LLMs have become a common interface
for end-user programming. Further, we phrased IPTs specifically
to study IPT communication (see Section 3.3), which is unlikely to
be representative of how end users will have IPTs communicated
to them. In this vein, our examples (when present) may not have
encouraged participants to broadly consider the nature of the IPT,
instead causing them to focus on those specific inputs and outputs.

Regarding LLMs, we consider that humans might structure in-
formation in a different way when communicating directly with an
LLM than they would with another human. Further, the LLMs we
query may have been trained on similar IPTs due to how common
they are (e.g., finding the maximum element of a list may be a sub-
routine for data analysis or part of a sorting algorithm). End users
with uncommon programming workloads may experience different
behaviors when querying LLMs than what we report here.

How Humans Communicate Programming Tasks in Natural Language. . . CHI ’25, April 26–May 01, 2025, Yokohama, Japan

5 Study 2 Methods
Our insights from Study 1 focused on how humans communicate
IPTs to other humans and how LLMs interpret them. However, we
did not investigate how humans communicate IPTs directly to LLMs.
Our second study addresses this limitation and others by making
three methodological changes. First, we construct our Study 2 IPTs
to be more representative of how end-users might in the future
leverage LLMs to perform computation in their daily life. Further,
we decided to communicate IPTs to the human sender primarily
through a visual depiction because the domain-specific nature of
the new IPTs prevented us from asking participants to generalize
them. Finally, to better understand interaction for language models,
we replaced the human receiver with the best-performing LLM
from Study 1, GPT-4. Unless otherwise specified, the other methods
remained the same as in Study 1.

5.1 IPT Selection
We collaboratively developed five IPTs that we believe end users
might want to use an LLM to solve. Short descriptions of these
IPTs are listed in Table 7, while their corresponding full versions
are listed in Appendix D. We also changed the fundamental way
in which we presented IPTs from text to a predominantly visual
format. Notably, we could not ask senders to change the context in
which an IPT occurs because one of our main goals was to have the
IPTs reflect actual workloads in which end users might be interested.
We therefore used images to ensure that senders would not copy
or paraphrase text we wrote. As in Study 1’s text descriptions, we
include distractor elements in the images. An example of a visual
IPT is shown in Figure 12; the Phryges are distractors.

We also wanted to make our IPTs more computationally complex
after Study 1 found that straightforward IPTs like “find the maxi-
mum element of a list” were trivial to communicate. In particular,
every IPT now involved multiple steps of reasoning and had at least
one edge case built in. For example, for the surcharges IPT, the
surcharges for all items is 20% of the items cost unless that person
is a member—in that case, there is only a $1 surcharge on each item.
We also made the change that all senders were now presented with
examples to ensure understanding despite the increased complex-
ity. We presented each sender with three examples, two of which
captured regular behavior and one which demonstrated what to
do during an edge case. To ensure that senders actually sent exam-
ples when assigned to the examples experimental condition, we
included a separate text area for writing the examples and would
not let those participants proceed if that area was blank.

5.2 Pairing
A motivating factor of Study 2 was to determine how humans
communicate IPTs directly to LLMs. Accordingly, all participants in
Study 2 were senders and were paired with an LLM as the receiver.
We also changed the interaction condition to accommodate the LLM.
Specifically, we only allowed the LLM to provide feedback once per
IPT. This design prevents cases where the LLM essentially traps the
sender in the study by constantly stating that their IPT rephrasing
is unclear. To encourage the LLM to provide useful feedback during
interaction, we used the following system message as part of its
prompt: “Below are instructions to solve a computational task. If the

Figure 12: The bill IPT, which is emblematic of tasks requir-
ing arithmetic that is straightforward, yet cumbersome, for
a human.

instructions address what to do in all possible contexts, even tricky
test contexts, write ‘understood.’ Otherwise, if the description could
be clearer, provide succinct feedback.” To produce code, we lightly
copyedit the prompt from our main study for clarity to “Write a
single Python function which implements the process described
above.” For direct answering, we prompt the LLM, “Please determine
the correct answer to the test context using the instructions above.”

6 Study 2 Results
In this section, we describe the results of having human senders
communicate IPTs to GPT-4.

6.1 Participants
Initially, 101 participants completed Study 2. We excluded six, five
of whom seemed to use ChatGPT to generate descriptions and one
who did not answer the majority of study questions, leaving 95
participants as our sample. Among these 95 participants, 39.6% did
not have a college degree, 10.4% held an associate’s degree, 37.9%
held a bachelor’s degree, and 11.6% held a graduate degree. In terms
of age, 17.9% were 18–24 years old, 36.9% were 25–34 years old,
24.2% were 35–44 years old, and the remaining 21.1% were 45 years
old or older. Finally, 46.3% of participants identified as male, 51.6%
identified as female, and 2.1% identified as non-binary/third gender.
We categorized 33.7% of participants as programmers and the rest
as non-programmers based on their answers to the same questions
as in Study 1. Our regression baselines were analogous to Study 1.

6.2 Overall Correctness
Recall that each pair was randomly assigned four IPTs with four test
cases each. Across their assigned IPTs, the human senders averaged
8.7/16 test cases correct (54.2%), with a median of 9/16 (56.3%) and
standard deviation of 4.1. When directly answering test cases, GPT-
4 averaged 6.4/16 test cases correct (39.7%), with a median of 6/16
(37.5%) and standard deviation of 3.1. However, when generating
Python code, GPT-4 did less well, averaging 2.8/16 test cases correct
(17.6%), with a median of 2/16 (12.5%) and standard deviation of
2.4. At the per-IPT level when directly answering test cases, GPT-4
answered more test cases correctly than the sender 48.7% of the
time, GPT-4 and the sender answered the same number of test cases
correctly 35.3% of the time, and GPT-4 answered more test cases

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Pickering et al.

Table 7: Succinct descriptions of the 5 IPTs we tested in Study 2.
Name Short Summary of the IPT

bill Given the prices of some items and special promotions, determine the total bill.
surcharges Given items in a cart and special rules (based on who is a member, if a person brought a reusable bag) determine the total surcharges imposed.

format Given some out-of-date data, update the format of the data (e.g., from MM/DD/YYYY to DD/MM/YY).
scheduling Given some room requests and rules about when rooms can be shared, determine what the room schedule will look like.

iot Given three IOT devices and the rules about when they will turn on or off, determine which devices are on or off.

Table 8: Linear regression with the dependent variable indi-
cating how many of the four test cases GPT-4 answered cor-
rectly in Study 2when directly answering. Adjusted𝑅2 = 0.378.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 0.973 0.191 5.100 <.001

Condition: Examples Non-examples -0.005 0.109 -0.043 .966

Condition: Interactive Non-interactive 0.198 0.102 1.945 .053

Sender: # Test Cases Correct – 0.371 0.037 9.957 <.001

Sender is Programmer Non-programmer 0.384 0.112 3.435 <.001

Sender Age 18–24 25–34 0.123 0.148 0.832 .406
Sender Age 35–44 25–34 -0.183 0.131 -1.391 .165
Sender Age 44+ 25–34 0.153 0.145 1.058 .291

Sender is Non-male Male -0.048 0.105 -0.452 .652

Sender Degree: None Bachelor’s -0.078 0.114 -0.688 .492
Sender Degree: Associate’s Bachelor’s 0.318 0.182 1.742 .082
Sender Degree: Graduate Bachelor’s 0.161 0.166 0.971 .332

IPT: surcharges bill -0.740 0.161 -4.595 <.001
IPT: format bill -0.828 0.163 -5.095 <.001
IPT: scheduling bill -0.513 0.160 -3.215 .001
IPT: iot bill 0.151 0.160 0.946 .345

Table 9: Linear regression with the dependent variable in-
dicating how many of the four test cases GPT-4 answered
correctly in Study 2 when producing Python code. Adjusted
𝑅2 = 0.274.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 0.893 0.197 4.540 <.001

Condition: Examples Non-examples 0.419 0.112 3.738 <.001

Condition: Interactive Non-interactive 0.029 0.105 0.279 .781

Sender: # Test Cases Correct – 0.189 0.038 4.905 <.001

Sender is Programmer Non-programmer 0.286 0.115 2.481 .014

Sender Age 18–24 25–34 -0.218 0.152 -1.431 .153
Sender Age 35–44 25–34 -0.166 0.136 -1.224 .222
Sender Age 44+ 25–34 -0.147 0.149 -0.988 .324

Sender is Non-male Male 0.084 0.109 0.776 .438

Sender Degree: None Bachelor’s -0.117 0.117 -0.992 .322
Sender Degree: Associate’s Bachelor’s -0.068 0.188 -0.362 .718
Sender Degree: Graduate Bachelor’s -0.156 0.171 -0.909 .364

IPT: surcharges bill -0.699 0.166 -4.207 <.001
IPT: format bill -1.215 0.168 -7.248 <.001
IPT: scheduling bill -1.141 0.165 -6.929 <.001
IPT: iot bill -0.418 0.165 -2.534 .012

correctly than the sender 16.1% of the time. When writing Python
code, GPT-4 answered more test cases correctly than the sender
5.0% of the time, GPT-4 and the sender answered the same number
of test cases correctly 26.3% of the time, and the sender answered
more test cases correctly 68.7% of the time.

We now focus on GPT-4 directly answering test cases. Table 8
reveals that neither the sender being assigned to the examples
condition nor to the interactive condition had any significant effect

Table 10: Linear regression correlating our qualitative codes
of the descriptions written by participants in the examples
condition and how many of the four test cases GPT-4 an-
swered correctly in Study 2 when directly answering. Ad-
justed 𝑅2 = 0.281.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 1.377 0.341 4.038 <.001
of Examples – 0.135 0.088 1.532 .128
Correctness: Mixed Correctness All Correct -0.434 0.259 -1.673 .097
Correctness: All Incorrect All Correct -0.929 0.258 -3.609 <.001
Correctness: No Examples All Correct -1.195 0.466 -2.565 .011
Reused Our Examples Did Not 0.327 0.394 0.828 .409
Properly Formatted Not 0.498 0.264 1.884 .062

on GPT-4’s ability to directly answer test cases. However, parallel
to Study 1, the number of test cases the corresponding sender
answered correctly was a significant predictor of how many test
cases GPT-4 answered correctly (𝛽 = 0.371, 𝑝 < 0.001), as was the
sender’s programming experience (𝛽 = 0.384, 𝑝 < 0.001).

When GPT-4 produced code, the number of test cases the sender
answered correctly (𝛽 = 0.189, 𝑝 < 0.001) and the sender having
programming experience (𝛽 = 0.286, 𝑝 = 0.014) again correlated
with GPT-4 answeringmore test cases correctly, as shown in Table 9.
However, unlike for direct answering, the sender being assigned
to the examples condition had a significant positive effect when
GPT-4 produced code (𝛽 = 0.419, 𝑝 < .001).

6.3 The Lexicon Used to Rephrase IPTs
Programmers and non-programmers used different language when
describing IPTs. We examined the unique words each participant
used across IPT rephrasings, then analyzed the frequencies of words
across participants. We observed that programmers tended to use
words reminiscent of control flow—“otherwise,” “change,” “list,” “out-
put,” and “follow.” In contrast, non-programmers were more likely
to use words where control flow was implicit, including “answer,”
“format,” and “determine.” Programmers also tended to use precise
words like “multiply,” “combine,” “subtract,” “sorted,” and “state.”

6.4 Characteristics of Examples
To gauge what types of examples are beneficial for communicating
IPTs to GPT-4, we use both qualitative and quantitative analysis.

6.4.1 Comparison of programmers and non-programmers regard-
ing examples when communicating to an LLM. As in Section 4.5.1,
we first examine trends in the quantity of examples. Although we
changed our user interface in Study 2 to more strongly nudge partic-
ipants to send examples, we ultimately observed differences in the
rates at which programmers and non-programmers sent examples.
Every programmer’s IPT rephrasing except for one (39/40, 97.5%)
contained at least one example. In contrast, non-programmers sent

How Humans Communicate Programming Tasks in Natural Language. . . CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Table 11: Linear regression correlating our qualitative codes
of the descriptions written by participants in the examples
condition and how many of the four test cases GPT-4 an-
swered correctly in Study 2 when writing Python code. Ad-
justed 𝑅2 = 0.078.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 0.828 0.413 2.004 .047
of Examples – 0.073 0.107 0.683 .496
Correctness: Mixed Correctness All Correct -0.246 0.314 -0.784 .434
Correctness: All Incorrect All Correct -0.675 0.312 -2.165 .032
Correctness: No Examples All Correct -0.737 0.565 -1.306 .194
Reused Our Examples Did Not -0.083 0.478 -0.174 .862
Properly Formatted Not 0.354 0.320 1.108 .270

Table 12: Linear regression correlating our qualitative codes
of the descriptions written by participants in the interac-
tive condition and how many of the four test cases GPT-4
answered correctly in Study 2 when directly answering. Ad-
justed 𝑅2 = 0.115.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 1.900 0.214 8.896 <.001
Interacted: No Yes 0.188 0.295 0.638 .525
Useful Requests – -0.306 0.077 -3.995 <.001
Irrelevant Requests – -0.106 0.096 -1.108 .269
Useful Responses – 0.309 0.108 2.853 .005
Ineffective Responses – -0.007 0.134 -0.051 .960

Table 13: Linear regression correlating our qualitative codes
of the descriptions written by participants in the interac-
tive condition and how many of the four test cases GPT-4
answered correctly in Study 2 when writing Python code. Ad-
justed 𝑅2 = 0.014.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 0.884 0.205 4.323 <.001
Interacted: No Yes 0.028 0.283 0.098 .922
Useful Requests – -0.164 0.073 -2.244 .026
Irrelevant Requests – -0.077 0.092 -0.844 .400
Useful Responses – 0.147 0.104 1.418 .158
Ineffective Responses – 0.031 0.129 0.238 .812

at least one example in 89.6% of IPT descriptions (86/96). While, as
in Study 1, the median number of examples sent by programmers
tended to be higher (programmer median: 2.5, non-programmer
median: 1), the average number of examples sent by these groups
diverged, whichwe did not observe in Study 1. Specifically, program-
mers sent on average 2.5 examples per IPT, while non-programmers
sent on average 1.8 examples per IPT. Programmers reused at least
one example 5.0% of the time (2/40), while non-programmers reused
at least one example 6.3% of the time (6/96). Consistent with the
results of Study 1, we also observed differences across groups in
the clarity of examples’ inputs and output, as well as the number
of examples sent. Programmers clearly formatted the IPT’s inputs
and outputs 92.5% of the time (37/40), while non-programmers did
so 71.9% of the time (69/96). Programmers had an average of 2.1
correct examples per IPT, while non-programmers had an average
of 1.1 correct examples per IPT. Relatedly, programmers included
at least one incorrect example 37.5% of the time (15/40), while non-
programmers did so 50.0% of the time (48/96).

From these results, we conclude that while our UI change did in-
crease the rate at which both programmers and non-programmers
sent examples, programmers were still more likely to include more
examples, as well as higher quality examples. These trends seemed
to hold independent of both IPT complexity and whether the re-
ceiver was an LLM or human.

6.4.2 Quantitative Effects of Examples. We examine the quantita-
tive effect(s) of examples through the lens of our linear regression
models (Tables 10 and 11). We note that entirely incorrect examples
had a significant effect regardless of if GPT-4 was producing code
or directly answering test cases. Further, GPT-4 seemed more vul-
nerable to a lack of examples when direct answering (𝛽 = −1.195,
𝑝 = .011) rather than when producing code (𝛽 = −0.737, 𝑝 = .194).
We speculate this may be due to LLMs having being optimized for
n-shot learning. In other words, LLMs are trained to modify their
behavior to be consistent with any examples provided.

6.5 Characteristics of Interactions
We qualitatively coded interactions to determine whether GPT-4
clearly articulated one or more shortcomings in the sender’s IPT
rephrasing and whether the human sender addressed one or more
shortcomings in response to the feedback.

6.5.1 Differences in LLM Interactivity from Human Interactivity.
GPT-4 interacted in ways that human receivers in Study 1
never did. For example, GPT-4 would occasionally copyedit the
entire sender rephrasing, which no human receiver either offered
or attempted to do. There were also more subtle differences. GPT-4
would often givemany points of feedback for the sender to clarify;
in fact, GPT-4 gave eight points of feedback for one sender’s IPT.
This contrasts with Study 1, where a human would almost always
request a single part of the IPT be clarified. Further, the rate of in-
teraction was much higher in Study 2. The LLM gave feedback for
81.1% of the IPTs (146/180), whereas human receivers gave feedback
for 26.6% of IPTs (68/256) in Study 1. When GPT-4 gave feedback,
it gave an average of 2.2 distinct points of feedback. In contrast,
human receivers were much more likely to pose a single request or
single question. However, not all of GPT-4’s feedback was sensible
or relevant. For example, GPT-4 once asked, “Does the client need to
pay for the free smoothie?” On average, GPT-4 provided 1.6 points
of feedback per IPT that articulated a shortcoming of the sender’s
rephrasing. Thus, human senders sometimes needed to sift through
GPT-4’s feedback to determine what was relevant.

6.5.2 Differences in Interactivity Based on Programming Experi-
ence. GPT-4 seemed to interact differently with programmers and
non-programmers. In particular, GPT-4 gave feedback less fre-
quently to programmers (no feedback: 25.0%, 15/60 IPTs) than
non-programmers (no feedback: 15.8%, 19/120 IPTs). Furthermore,
the LLM gave programmers an average of 1.8 points of feedback
and non-programmers an average of 2.4 points of feedback per IPT.

Programmers responded to at least one point of feedback 97.8% of
the time (44/45). For those 45 IPTs, the senders on average responded
to 1.8 points of feedback. In contrast, non-programmers responded
to feedback 70.3% of the time (71/101). For those 101 IPTs, they
responded on average to 1.2 points of feedback. We also saw differ-
ences in the degree to which programmers and non-programmers

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Pickering et al.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of Correct Testcases

bill

iot

scheduling

surcharges

format

Figure 13: How many of the 4 test cases GPT-4 got right for
each Study 2 IPT when directly answering.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of Correct Testcases

bill

iot

scheduling

surcharges

format

Figure 14: How many of the 4 test cases GPT-4 got right for
each Study 2 IPT when writing Python code.

materially changed their descriptions. Programmers were more
likely to materially clarify their IPTs when responding as
they did so 81.4% of the time (35/44), while non-programmers mate-
rially clarified their IPTs 78.9% of the time (56/71). Programmers
also tended tomaterially clarify their IPTs to a greater degree
than non-programmers when responding, addressing on average 1.4
points of feedback, while non-programmers responded on average
to 1.1 points of feedback.

6.5.3 LLMs Directly Answering vs. Producing Code. Finally, we re-
visit GPT-4’s performance when directly answering test cases ver-
sus producing Python code to answer test cases. Recall that in
Study 1 (Table 4 in Section 4.7), GPT-4 answered 59.8% of test cases
correctly when directly answering, versus 45.6% of test cases by pro-
ducing Python code. While GPT-4 essentially answered one-third
more test cases correctly when directly answering in Study 1, for
Study 2 we observed a far more pronounced difference. As a com-
parison of Figure 13 and Figure 14 shows, GPT-4 answered more
than twice as many test cases correctly when directly answering
(39.7% of test cases) than when producing Python code (17.6%).

6.6 Study 2: Should LLMs Have Failed?
Similar to Section 4.8, we examine 100 randomly selected IPT de-
scriptions from Study 2 to determine whether cases where GPT-4
answered incorrectly might be fixed by improvements to LLMs,
or whether the human senders’ descriptions are insufficient. We
observe a greater spread in the quality of IPTs in Study 2 than in
Study 1. Namely, only 22/100 descriptions (vs. 45/100 in Study 1)
contained all information needed to answer regular and edge
cases, whereas 36/100 descriptions (vs. 33/100 in Study 1) contained
none of the information needed. When the descriptions con-
tained all information needed, senders correctly answered 3.3/4 test
cases on average, whereas GPT-4 on average answered only 1.6/4
when directly answering and 0.7/4 when producing code. More
senders forgot to specify the goal of the IPT in Study 2 than in
Study 1, perhaps owing to the picture format. An example of an IPT
rephrasing with an unclear goal was “Members pay a $1 surcharge
on the items that are not $5 and $1 surcharge if they don’t bring
their own bag.” While it can potentially be inferred that the IPT
concerns calculating surcharges, this is never explicitly stated. The
goal was unclear for 23/100 descriptions in Study 2, versus 2/100
in Study 1. Further, it appears that GPT-4 was able to correctly
guess at the goal in these cases: the sender answered 1.3/4 test cases
correctly on average, while GPT-4 answered on average 1.5/4 when
directly answering and 0.9/4 when producing code.

Much like in Study 1, senders often ended up communicating
different IPTs. This happened in 41/100 descriptions in our random
sample for Study 2, as well as 31/100 in Study 1. Similarly, senders
sometimes had missing definitions, which happened in 25/100 de-
scriptions for Study 2 and 26/100 in Study 1. We again find that
GPT-4 seemed to guess correctly in these cases. On average, senders
got 1.4/4 test cases correct when there were missing definitions, but
GPT-4 got 1.9/4 correct when directly answering and 1.1/4 when
producing code. While extraneous information was less common
in Study 2 (9/100 descriptions, vs. 18/100 in Study 1), senders who
included extraneous information tended to do poorly on test cases,
answering 1.3/4 correctly on average. Much like Study 1, senders
with clearly formatted descriptions (13/100 IPTs) tended to demon-
strate better understanding, answering 2.9/4 test cases correct on
average. Curiously, GPT-4 seemed to do an abysmal job at produc-
ing code when the description was clearly formatted, answering
on average 0.2/4 test cases correctly (1.4 when directly answering).
However, senders who wrote their description in a step-by-step
format (16/100 in Study 2) and who wrote their IPTs such that it
was possible to answer all edge cases (22/100 in Study 2 vs. 48/100
in Study 1) tended to demonstrate clear understanding, answering
on average 3.2/4 and 3.3/4 of test cases correctly, respectively. LLM
performance for those descriptions remained low, however, with
averages ≤ 1.6/4 regardless of whether they were producing code.

7 Discussion
We find evidence that a human sender’s understanding of an IPT
is a necessary prerequisite for either human or LLM receivers to
understand the IPT. While this has been the topic of recent theoriza-
tion by Sarkar, we provide empirical evidence to its necessity for
end-user programming with LLMs [51]. In both Study 1 and Study 2,
the number of test cases answered correctly by the sender was a

How Humans Communicate Programming Tasks in Natural Language. . . CHI ’25, April 26–May 01, 2025, Yokohama, Japan

significant predictor of the number of test cases the receiver would
get right regardless of whether the receiver was a human or LLM, as
well as regardless of whether the LLM was writing code or directly
answering. This suggests that clear IPT communication may be a
necessary condition for enabling natural language programming.
We expect that this result will hold regardless of how LLM technol-
ogy improves as humans generally struggle to completely describe
IPTs (Sections 4.8, 6.6). However, we also speculate that as LLMs
improve, they may become more adept at guessing — we speculate
this may be particularly relevant for failure modes relating to extra-
neous information and forgetting to specify the goal of the IPT. We
also note that while it is well-known that examples are beneficial
when prompting LLMs [5, 64], carefully selecting examples may
be an under-explored option for clarifying the understanding and
intent of those prompting LLMs. That is, examples could be useful
for clarifying a sender’s intent.

Critically, we do not find evidence that only individuals with
programming experience are capable of understanding or commu-
nicating IPTs, although we do find that programmers consistently
do a bit better than non-programmers at answering test cases and
communicating IPTs. We find that programmers are more likely
to include examples, clearly format examples, and include a larger
number of examples. Further, programmers are less likely to re-
ceive feedback from either a human or LLM. However, we find
that GPT-4 gives worse feedback to individuals with programming
experience (i.e., the feedback tended to be irrelevant and/or incor-
rect at a higher rate than for non-programmers). Further, the LLM
in our study—which was admittedly not asked to provide only a
single point of feedback—often gave many points of feedback, up to
seven or eight in some cases. These issues highlight a complex de-
sign matrix. Namely, we observe that feedback utility and quantity
decreased with user expertise; inexperienced users may get over-
whelmed by a large quantity of useful feedback, while experienced
users may only be presented with a small quantity of ineffective
feedback. We speculate that problems related to vast quantities
of feedback may be mitigated in the future as alignment research
continues. However, we also speculate that the gap between feed-
back utility for programmers and non-programmers will remain as
there is likely to be extreme variance in what feedback is useful for
non-programmers due to their absence of formal training.

We also note that the way in which LLMs enable end-user pro-
gramming may need to change adaptively based on the nature of
the IPT. We found in Study 1 that certain simple IPTs were trivial
to express. However, Study 2’s IPTs were inherently more complex,
and GPT-4 struggled to produce functional code for many of the
IPTs. We recommend that designers gauge whether code should be
produced, or direct responses would be more appropriate based on
task complexity as well as other artifacts that may suggest a lack of
understanding on the part of the end user, such as incoherence in
the input prompt. In this vein, we note from Study 2 that the quan-
tity of feedback elements correlated significantly with if the model
was likely to answer test cases correctly, either by producing code
or by direct answering. We speculate that designers could simply
prompt a model for feedback and record the number of points of
feedback the model gives (without actually showing that feedback
to the end user) in order to potentially gain an indication of whether
the LLM is likely to respond correctly or not. A designer could then

take actions like preemptively showing or hiding widgets based on
the consequences of an incorrect response. We generally expect
this result to hold at a high level in the future, although it may
be the case that an “ideal” UI changes frequently due to specific
idiosyncrasies of LLM outputs, such as consistently outputting too
much text. This is further supported by our analysis in Sections 4.8
and 6.6, which shows that humans often forget to provide necessary
definitions when describing IPTs and in those cases, the LLMs tend
to struggle to produce correct code (which is to be expected given
the pedantic nature of coding).

Related to the previous points is our observation that GPT-4 was
more successful in Study 1 (Section 4.7) and far more successful in
Study 2 (Section 6.5.3) when directly answering test cases rather
than producing Python code to answer those test cases. This dif-
ference is particularly notable because, in the broader context of
end-user programming, code could conceivably serve as a useful
intermediate representation for the process learned by the LLM.
For instance, the user could communicate their intention in natural
language, have the LLM produce code as an internal representa-
tion, and then perform future computations using that cached code.
Doing so has the advantage that the outputs created using the code
representation would not confabulate (hallucinate) and also has
the potential to provide greater transparency to the user about the
representation learned, such as through the iterative generation of
appropriate examples. As Study 2’s IPTs were more complex and
much less likely to have been previously seen in the LLM training
process, particularly as half of the Study 1 IPTs were included in
the HumanEval [7] benchmark, we believe that Study 2 is a more
realistic view of future uses of LLMs for end-user programming.

8 Conclusion
In this paper, we examined the communication of information pro-
cessing tasks to other humans, as well as to code-generating LLMs.
We found that while programming experience played a beneficial
role in communicating these tasks to other humans or LLMs, the
effect was often complemented by, and sometimes secondary to, the
effects of examples. We also found that programmers were more
likely to clearly format their examples, were more likely to send
examples, and were more likely to include a greater number of
examples. We surprisingly found that allowing for interactivity
did not play a significant role. Often, the presence of an interac-
tion served as a (statistically significant) indicator that the sender’s
description was unclear. We found differences in how human re-
ceivers and LLMs provide feedback to senders. Notably, we found
that LLM feedback tended to be irrelevant more frequently for
programmers, and that the LLM tended to provide feedback more
frequently for non-programmers. We posit that this may reveal a us-
ability issue wherein novice users are more likely to be flooded with
too much feedback while experienced users may receive a more
manageable quantity of incorrect or irrelevant feedback. Finally, we
speculate that because the effect of programming experience was
often complemented by, or secondary to, the effect of examples, this
programming experience “gap” might be bridged by nudging non-
programmers towards programmers’ beneficial behaviors through
carefully designed user interfaces.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Pickering et al.

References
[1] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk

Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
and Charles Sutton. 2021. Program Synthesis with Large Language Models.
arXiv:2108.07732.

[2] Tewodros W. Ayalew, Jennifer Wang, Michael L. Littman, Blase Ur, and Sarah
Sebo. 2025. Enabling End Users to Program Robots Using Reinforcement Learning.
In Proceedings of the 2025 ACM/IEEE International Conference on Human-Robot
Interaction.

[3] Yasharth Bajpai, Bhavya Chopra, Param Biyani, Cagri Aslan, Dustin Coleman,
Sumit Gulwani, Chris Parnin, Arjun Radhakrishna, and Gustavo Soares. 2024.
Let’s Fix this Together: Conversational Debugging with GitHub Copilot. In Pro-
ceedings of the 2024 IEEE Symposium on Visual Languages and Human-Centric
Computing.

[4] Barbara Rita Barricelli, Fabio Cassano, Daniela Fogli, and Antonio Piccinno.
2019. End-User Development, End-User Programming and End-User Software
Engineering: A Systematic Mapping Study. Journal of Systems and Software 149
(2019), 101–137.

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165.

[6] Sarina Canelake. 2011. A Gentle Introduction To Programming Us-
ing Python. https://ocw.mit.edu/courses/6-189-a-gentle-introduction-to-
programming-using-python-january-iap-2011/

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish
Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe
Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,
Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage,
Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam
McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374.

[8] Anastasia Danilova, Alena Naiakshina, Stefan Horstmann, and Matthew Smith.
2021. Do You Really Code? Designing and Evaluating Screening Questions for
Online Surveys with Programmers. In Proceedings of the 2021 IEEE/ACM 43rd
International Conference on Software Engineering.

[9] Ian Drosos, Advait Sarkar, Xiaotong Xu, Carina Negreanu, Sean Rintel, and Lev
Tankelevitch. 2024. “It’s Like a Rubber Duck That Talks Back”: Understand-
ing Generative AI-Assisted Data Analysis Workflows through a Participatory
Prompting Study. In Proceedings of the 3rd Annual Meeting of the Symposium on
Human-Computer Interaction for Work.

[10] Jean-Baptiste Döderlein, Mathieu Acher, Djamel Eddine Khelladi, and Benoit
Combemale. 2023. Piloting Copilot and Codex: Hot Temperature, Cold Prompts,
or Black Magic? arXiv:2210.14699.

[11] Kasra Ferdowsi, Jack Williams, Ian Drosos, Andy Gordon, Carina Negreanu,
Nadia Polikarpova, Advait Sarkar, and Ben Zorn. 2023. ColDeco: An End User
Spreadsheet Inspection Tool for AI-Generated Code. In Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric Computing.

[12] James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of Ope-
nAI Codex on Introductory Programming. In Proceedings of the 24th Australasian
Computing Education Conference.

[13] James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos,
James Prather, and Brett A. Becker. 2023. My AI Wants to Know if This Will
Be on the Exam: Testing OpenAI’s Codex on CS2 Programming Exercises. In
Proceedings of the 25th Australasian Computing Education Conference.

[14] Neil Fraser. 2015. Ten Things We’ve Learned From Blockly. In Proceedings of the
2015 IEEE Blocks and Beyond Workshop.

[15] Gemini Team Google. 2024. Gemini: A Family of Highly Capable Multimodal
Models. arXiv:2312.11805.

[16] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora,
Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring Coding Challenge Competence With APPS.
arXiv:2105.09938.

[17] Justin Huang and Maya Cakmak. 2015. Supporting Mental Model Accuracy in
Trigger-Action Programming. In Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing.

[18] Dhanya Jayagopal, Justin Lubin, and Sarah E. Chasins. 2022. Exploring the
Learnability of Program Synthesizers by Novice Programmers. In Proceedings of
the 35th Annual ACM Symposium on User Interface Software and Technology.

[19] Eirini Kalliamvakou. 2022. Research: Quantifying GitHub Copilot’s Impact
on Developer Productivity and Happiness. https://github.blog/2022-09-07-
research-quantifying-github-copilots-impact-on-developer-productivity-and-
happiness/

[20] Ulas Berk Karli, Juo-Tung Chen, Victor Nikhil Antony, and Chien-Ming Huang.
2024. Alchemist: LLM-Aided End-User Development of Robot Applications.
In Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot
Interaction.

[21] Mohammad Amin Kuhail, Shahbano Farooq, Rawad Hammad, and Mohammed
Bahja. 2021. Characterizing Visual Programming Approaches For End-User
Developers: A Systematic Review. IEEE Access 9 (2021), 14181–14202.

[22] Mina Lee, Megha Srivastava, Amelia Hardy, John Thickstun, Esin Durmus, Ash-
win Paranjape, Ines Gerard-Ursin, Xiang Lisa Li, Faisal Ladhak, Frieda Rong,
Rose E. Wang, Minae Kwon, Joon Sung Park, Hancheng Cao, Tony Lee, Rishi
Bommasani, Michael Bernstein, and Percy Liang. 2024. Evaluating Human-
Language Model Interaction. arXiv:2212.09746.

[23] LeetCode. 2023. LeetCode: A New Way to Learn. https://leetcode.com/
[24] Nicola Leonardi, MarcoManca, Fabio Paternò, and Carmen Santoro. 2019. Trigger-

Action Programming For Personalising Humanoid Robot Behaviour. In Proceed-
ings of the 2019 CHI Conference on Human Factors in Computing Systems.

[25] Henry Lieberman, Fabio Paternò, Markus Klann, and VolkerWulf. 2006. End-User
Development: An Emerging Paradigm. In End User Development. Springer.

[26] Greg Little, Tessa A. Lau, Allen Cypher, James Lin, Eben M. Haber, and Eser Kan-
dogan. 2007. Koala: Capture, Share, Automate, Personalize Business Processes on
the Web. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems.

[27] Michael Xieyang Liu, Advait Sarkar, Carina Negreanu, Benjamin Zorn, Jack
Williams, Neil Toronto, and Andrew D. Gordon. 2023. “What It Wants Me To
Say”: Bridging the Abstraction Gap Between End-User Programmers and Code-
Generating Large Language Models. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems.

[28] Andrew M. McNutt, Chenglong Wang, Robert A. Deline, and Steven M. Drucker.
2023. On the Design of AI-Powered Code Assistants For Notebooks. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems.

[29] André N. Meyer, Earl T. Barr, Christian Bird, and Thomas Zimmermann. 2021.
TodayWas a Good Day: The Daily Life of Software Developers. IEEE Transactions
on Software Engineering 47, 5 (2021), 863–880.

[30] Xianghang Mi, Feng Qian, Ying Zhang, and XiaoFeng Wang. 2017. An Empirical
Characterization of IFTTT: Ecosystem, Usage, and Performance. In Proceedings
of the 2017 Internet Measurement Conference.

[31] Rob Miller, Victoria H. Chou, Michael S. Bernstein, Greg Little, Max Van Kleek,
David R. Karger, and mc schraefel. 2008. Inky: A Sloppy Command Line For the
Web With Rich Visual Feedback. In Proceedings of the ACM Symposium on User
Interface Software and Technology.

[32] Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh,
Michel C. Desmarais, and Zhen Ming (Jack) Jiang. 2023. GitHub Copilot AI Pair
Programmer: Asset or Liability? Journal of Systems and Software 203 (2023).

[33] Brad A. Myers, Amy J. Ko, and Margaret M. Burnett. 2006. Invited Research
Overview: End-User Programming. In Extended Abstracts of the 2006 CHI Confer-
ence on Human Factors in Computing Systems.

[34] Bonnie A. Nardi. 1993. A Small Matter of Programming: Perspectives on End User
Computing. MIT Press.

[35] Nhan Nguyen and Sarah Nadi. 2022. An Empirical Evaluation of GitHub Copilot’s
Code Suggestions. In Proceedings of the 19th International Conference on Mining
Software Repositories.

[36] OpenAI. 2022. Introducing ChatGPT. https://openai.com/blog/chatgpt
[37] OpenAI. 2024. GPT-4 Technical Report. arXiv:2303.08774
[38] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and

Ramesh Karri. 2021. Asleep at the Keyboard? Assessing the Security of GitHub
Copilot’s Code Contributions. arXiv:2108.09293

[39] Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. 2023. Do Users
Write More Insecure Code With AI Assistants?. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security.

[40] Madison Pickering, Helena Williams, Alison Gan, Weijia He, Hyojae Park, Fran-
cisco Piedrahita Velez, Michael L. Littman, and Blase Ur. 2025. Data Release.
https://github.com/UChicagoSUPERgroup/chi25

[41] Prolific. 2025. Prolific: A Higher Standard of Online Research. https://www.
prolific.co/

[42] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. OpenAI
Blog.

[43] Amir Rahmati, Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2017. IFTTT
vs. Zapier: A Comparative Study of Trigger-Action Programming Frameworks.
arXiv:1709.02788.

[44] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian

https://ocw.mit.edu/courses/6-189-a-gentle-introduction-to-programming-using-python-january-iap-2011/
https://ocw.mit.edu/courses/6-189-a-gentle-introduction-to-programming-using-python-january-iap-2011/
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://leetcode.com/
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2108.09293
https://github.com/UChicagoSUPERgroup/chi25
https://www.prolific.co/
https://www.prolific.co/

How Humans Communicate Programming Tasks in Natural Language. . . CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Silverman, and Yasmin Kafai. 2009. Scratch: Programming For All. Commun.
ACM 52, 11 (2009), 60–67.

[45] Kevin Roose. 2023. How Schools Can Survive (and Maybe Even Thrive) With A.I.
This Fall. New York Times. https://www.nytimes.com/2023/08/24/technology/
how-schools-can-survive-and-maybe-even-thrive-with-ai-this-fall.html

[46] Steven I. Ross, FernandoMartinez, Stephanie Houde, Michael Muller, and Justin D.
Weisz. 2023. The Programmer’s Assistant: Conversational Interaction with a
Large Language Model for Software Development. In Proceedings of the 28th
International Conference on Intelligent User Interfaces.

[47] Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample.
2020. Unsupervised Translation of Programming Languages. In Proceedings of
the 34th International Conference on Neural Information Processing Systems.

[48] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cris-
tian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. 2024. Code Llama: Open Foundation Models for
Code. arXiv:2308.12950

[49] Gustavo Sandoval, Hammond Pearce, Teo Nys, Ramesh Karri, Siddharth Garg, and
Brendan Dolan-Gavitt. 2023. Lost at C: A User Study on the Security Implications
of Large Language Model Code Assistants. In Proceedings of the 32nd USENIX
Security Symposium.

[50] Advait Sarkar. 2023. Will Code Remain a Relevant User Interface for End-User
Programming with Generative AI Models?. In Proceedings of the 2023 ACM SIG-
PLAN International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software.

[51] Advait Sarkar. 2024. Intention Is All You Need. arXiv:2410.18851
[52] Advait Sarkar, Andrew D. Gordon, Carina Negreanu, Christian Poelitz, Sruti Srini-

vasa Ragavan, and Ben Zorn. 2022. What Is It Like to Program With Artificial
Intelligence? arXiv:2208.06213

[53] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic Gen-
eration of Programming Exercises and Code Explanations Using Large Language
Models. In Proceedings of the 2022 ACM Conference on International Computing
Education Research.

[54] Aarohi Srivastava et al. 2022. Beyond the Imitation Game: Quantifying and
Extrapolating the Capabilities of Language Models. arXiv:2206.04615.

[55] Florian Tambon, Arghavan Moradi Dakhel, Amin Nikanjam, Foutse Khomh,
Michel C. Desmarais, and Giuliano Antoniol. 2024. Bugs in Large Language
Models Generated Code: An Empirical Study. arXiv:2403.08937

[56] Lev Tankelevitch, Viktor Kewenig, Auste Simkute, Ava Elizabeth Scott, Advait
Sarkar, Abigail Sellen, and Sean Rintel. 2024. The Metacognitive Demands and
Opportunities of Generative AI. In Proceedings of the 2024 CHI Conference on
Human Factors in Computing Systems.

[57] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models.
arXiv:2302.13971

[58] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucu-
rull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia
Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini,
Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,
Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2:
Open Foundation and Fine-Tuned Chat Models. arXiv:2307.09288.

[59] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L. Littman. 2014.
Practical Trigger-Action Programming in the Smart Home. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems.

[60] Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah Mennicken,
Noah Picard, Diane Schulze, and Michael L. Littman. 2016. Trigger-Action Pro-
gramming in the Wild: An Analysis of 200,000 IFTTT Recipes. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems.

[61] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs.
Experience: Evaluating the Usability of Code Generation Tools Powered by Large
Language Models. In Extended Abstracts of the 2022 CHI Conference on Human
Factors in Computing Systems.

[62] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. arXiv:1706.03762.

[63] Jeffrey Wong and Jason I. Hong. 2007. Making Mashups With Marmite: Towards
End-User Programming For the Web. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems.

[64] J.D. Zamfirescu-Pereira, Richmond Y. Wong, Bjoern Hartmann, and Qian Yang.
2023. Why Johnny Can’t Prompt: How Non-AI Experts Try (and Fail) to Design
LLM Prompts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems.

[65] Lefan Zhang, Weijia He, Jesse Martinez, Noah Brackenbury, Shan Lu, and Blase
Ur. 2019. AutoTap: Synthesizing and Repairing Trigger-Action Programs Using
LTL Properties. In Proceedings of the 2019 IEEE/ACM 41st International Conference
on Software Engineering.

[66] Lefan Zhang, Weijia He, Olivia Morkved, Valerie Zhao, Michael L. Littman, Shan
Lu, and Blase Ur. 2020. Trace2tap: Synthesizing Trigger-Action Programs From
Traces of Behavior. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 4, 3 (2020).

[67] Valerie Zhao, Lefan Zhang, Bo Wang, Michael L Littman, Shan Lu, and Blase Ur.
2021. Understanding Trigger-Action Programs Through Novel Visualizations of
Program Differences. In Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems.

https://www.nytimes.com/2023/08/24/technology/how-schools-can-survive-and-maybe-even-thrive-with-ai-this-fall.html
https://www.nytimes.com/2023/08/24/technology/how-schools-can-survive-and-maybe-even-thrive-with-ai-this-fall.html
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2410.18851
https://arxiv.org/abs/2208.06213
https://arxiv.org/abs/2403.08937
https://arxiv.org/abs/2302.13971

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Pickering et al.

A Additional Details About Selecting IPTs For Study 1
We aimed to ensure our programming tasks were representative of problems that programmers would likely face. As a sanity check, we
randomly sampled 50 questions each from LeetCode, MIT introductory programming courses, and HumanEval. We did not sample problems
from APPS, MBPP, and BigBench because of either high problem complexity (APPS) or a high tendency to invoke mathematical or algorithmic
definitions (MBPP and BigBench). The set of n=150 questions was then randomly ordered. Two researchers inductively developed the
codebook in Table 14 to describe the types of problems, and qualitatively coded the questions. The researchers then met to resolve differences.

Table 14: Primary attributes on which we categorized potential IPTs.

Category Description

List Operations The task involves list manipulation and/or working with a list to compute a value (e.g., find the minimum of a list of values). 1D arrays are lists.
String Operations The task involves string manipulation and/or working with a list to compute a value (e.g., given a string, determine if something is a substring).
Simple Filtering The task involves simple "filtering": given a number of values, find a specific value (e.g., find a max, remove values that meet a certain criteria).
Optimization The task involves finding an optimal value (e.g., shortest path). This is distinct from filtering in that the sub-tasks required are nontrivial.
Two Dimensional The task involves 2D arrays, and/or thinking in with a "grid" pattern (e.g., moving around obstacles in a grid, battleship).
Simple Arithmetic The task involves simple arithmetic operations (addition, subtraction, division, modulo etc).
Complex Arithmetic The task involves more complex arithmetic operations (computing derivatives, efficiently checking if a number is prime).
Examples The task includes examples of intended input/output.
Data Structures The task involves some manipulation of a data structure (e.g., a binary tree or linked list).
Boolean/Branching The task revolves around using conditionals or other Boolean logic.

Following that, the researchers qualitatively coded our selected 12 programming tasks using the codebook developed over the set of 150.
The researchers similarly met to resolve coding differences. We then calculated the relative frequency of these labels among our randomly
sampled 150 programming problems and 12 programming tasks, and compared the ratios against each other to ensure that the qualities of our
chosen programming tasks were appropriate. We note that the task types varied significantly based on the problems source. We ultimately
concluded that many common programming tasks may be too difficult for a novice to understand. In particular, N-dimensional arrays,
data structure questions, and optimization problems were all common, but would be too difficult for an individual without programming
experience to understand. We consequently chose our tasks to emphasize simple arithmetic and simple logic.

B Full Descriptions of IPTs Given to Senders in Study 1
This appendix reports the full text of each IPT as given to senders. Below each IPT are the test cases, with edge cases italicized. We also
indicate each IPT’s relationship to problems in the HumanEval benchmark [7].

(1) max (HumanEval 35 reworded, including how to specify how to handle an empty list) You are moving to San Francisco, California. You
are looking to rent an apartment and have found a number of similar apartments. You unfortunately have some bad spending habits
and already have a lousy credit score of <600, so being able to pay rent as late as possible is a huge plus. Each apartment has a different
number of days that you can pay your rent late without penalty. Report the maximum number of days you could potentially pay your
rent late. Note that you should make sure to report the maximum, not the minimum or any other number. If there is no maximum
number, report -1.
• Given the task above, and input [30, 40, 10, 50, 25, 40], what should be reported? [Answer: 50]
• Given the task above, and input [100, 200, 300, 400], what should be reported? [Answer: 400]
• Given the task above, and input [], what should be reported? [Answer: -1]
• Given the task above, and input [80, 80, 80, 80], what should be reported? [Answer: 80]

(2) num_even (closely related to HumanEval 68, 104, 110, and 155; additionally, HumanEval 37, 85, 88, 98, 100, 102, 106, 107, 121, 123, 130,
131, 138, and 163 use even-ness as a subroutine) You are the babysitter of two very troublesome twins who want to eat saltwater taffy.
You will be given a list of the number of taffy pieces for a collection of bags of candy. You know that if the pieces in the bag cannot
be evenly divided among the twins, the twin that receives fewer pieces will throw a tantrum, which you’d like to avoid. Report the
number of bags that contain an even number of taffy pieces.
• Given the task above, and input [2000, 4003, 10342, 505431], what should be reported? [Answer: 2]
• Given the task above, and input [3053, 10643342, 545345, 2879209, 100432, 345082], what should be reported? [Answer: 3]
• Given the task above, and input [-100, -245, 3432, 15432], what should be reported? [Answer: 3]
• Given the task above, and input [81, 45, 11, 1313, 777, 904329], what should be reported? [Answer: 0]

(3) sum_pos (related to HumanEval 8, 40, 108, 43, 122, 142, 145, and 151. Less closely related to HumanEval 42, 71, 72, 84, 94 114, 121, 128,
and 133) Every summer in July there is an annual Spügelkömpf sports festival. You will be given a list of points athletes scored in a
competition. The points are the result of the annual Hugenhömfpfhen competition at the festival. Report the sum of the positive
points.
• Given the task above, and input [3, 5, 7, 10, 2], what should be reported? [Answer: 27]
• Given the task above, and input [100, 5, 20, 543, 12, 1, 6], what should be reported? [Answer: 687]
• Given the task above, and input [], what should be reported? [Answer: 0]

How Humans Communicate Programming Tasks in Natural Language. . . CHI ’25, April 26–May 01, 2025, Yokohama, Japan

• Given the task above, and input [3.4, -8.2, 1.2, -123, 2.6], what should be reported? [Answer: 7.2]

(4) reignfall (no close matches in HumanEval) You are part of a group of friends who like to go out drinking on Friday nights, and who
attempt to elect a designated driver democratically. There is a vote between two candidates, "Alice" and "Brooke". Alice has the nicer
car, but Brooke always lets you pick the music. A vote for "Alice" is denoted with an "A", while a vote for "Brooke" is denoted with a
"B". Votes are held on Wednesday evenings. The vote was called at a certain cutoff time, denoted "C". You have been chosen by your
friends to determine who is the next designated driver. Read the sequence of letters from left to right, stopping the voting count when
you see "C". Your friend group uses a sort of buggy app to record votes, so sometimes votes come in after the cutoff time. Count the
occurrences of "A"s and "B"s. It is not necessary to count the number of "C"s. If there are the same number of "A"s and "B"s, or more
"A"s than "B"s, report "A". You report "A" in this way because Brooke owes you ten bucks, which you are annoyed by. Otherwise,
report "B".
• Given the task above, and input [’AABBAAC’], what should be reported? [Answer: A]
• Given the task above, and input [’BBAABCBAABCAAC’], what should be reported? [Answer: B]
• Given the task above, and input [’CAABBA’], what should be reported? [Answer: A]
• Given the task above, and input [’AABBABC’], what should be reported? [Answer: A]

(5) palindrome (HumanEval 10 reworded) You are a human in the year 6000. You have recently become friends with a resident of the
planet Taerh, which is very similar to Earth. The residents of Taerh are roughly identical to humans, except for the fact that their skin
is green, contains chloroplasts, and they photosynthesize energy instead of eating. Your new alien friend is choosing a name to use on
both Earth and Taerh, and wants you to verify that the name satisfies a certain property. Your friend wants to choose a new name
because they are afraid that humans will make fun of the name they use on Taerh. Report T if the name is a palindrome, F otherwise.
• Given the task above, and input [’1551’], what should be reported? [Answer: T]
• Given the task above, and input [’MUSIC’], what should be reported? [Answer: F]
• Given the task above, and input [’-15351’], what should be reported? [Answer: F]
• Given the task above, and input [’O’], what should be reported? [Answer: T]

(6) find_sum (closely related to HumanEval 71 and 92) You have recently decided to drop out of college and pursue your dream of building
your own home in the forests of the Pacific Northwest. You are currently attempting to replace a door using scrap wood. You want to
use the scrap wood you have lying around because you don’t have much in the way of savings. You have a list of scrap wood lengths,
and a ’Target’ length that the wood must reach to fit in the door frame. You plan to join the wood together using wood glue, which
seeps into the pores of the wood scraps to bind them together. Report a pair of wood lengths from the list, where the sum of the
lengths are equal to the ’Target’. We are summing the lengths because joining the wood in this way does not require the wood pieces
to overlap for the joint. Report the larger wood length of the pair first. Do not accidentally report the smaller number first. If there is
no valid pair, report [].
• Given the task above, and input [2, 4, 5, 1, 3], ’Target=9’, what should be reported? [Answer: [5, 4]]
• Given the task above, and input [1, 6, 9, 3, 5], ’Target=7’, what should be reported? [Answer: [6, 1]]
• Given the task above, and input [4, 4, 3, 1], ’Target=5’, what should be reported? [Answer: [4, 1]]
• Given the task above, and input [5, 3, 3, 1], ’Target=5’, what should be reported? [Answer: []]

(7) rmv_dup (HumanEval 26 reworded) Every year, the annual Eidgenössisches Jodlerfest is held in Switzerland, which involves yodeling-
related activities. Your job is to manage a list of contestants for the premier yodeling competition, where every contestant is assigned
a number. Contestants are assigned numbers in strictly increasing order. However, some unscrupulous contestants have come back for
second and third chances, thinking that you wouldn’t recognize them. Unluckily for them, you have eidetic memory. Remove duplicate
individuals from the list, but do not otherwise change the list. Removing individuals from the list is equivalent to disqualifying those
rule-breakers from participating. Report the list after the duplicates have been removed.
• Given the task above, and input [9, 5, 3, 5], what should be reported? [Answer: [9, 3]]
• Given the task above, and input [1, 3, 7, 5, 7], what should be reported? [Answer: [1, 3, 5]]
• Given the task above, and input [3, 3, 3], what should be reported? [Answer: []]
• Given the task above, and input [25, 25, 1, 10, 10], what should be reported? [Answer: [1]]

(8) str_diff (related to HumanEval 112) You have just finished three grueling years of culinary school where you learned to be very
organized. You keep recipe cards and abbreviate ingredients to a single letter. You use ISO-size A7 index cards because you think they
are the perfect size for an index card. Your assistant has messed up one of your recipe cards by adding an extra ingredient. This guy is
always fiddling with your stuff when he thinks you’re not looking, which you find very annoying. Report the letter corresponding to
the ingredient that has been added to the first recipe card, given the second recipe card that your assistant has modified.
• Given the task above, and input [’wijht’, ’jihqwt’], what should be reported? [Answer: q]
• Given the task above, and input [’wdsffw’, ’fpwdsfw’], what should be reported? [Answer: p]

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Pickering et al.

• Given the task above, and input [’ttttttttt’, ’tttttttttt’], what should be reported? [Answer: t]
• Given the task above, and input [”, ’z’], what should be reported? [Answer: z]

(9) is_subseq (related to HumanEval 7, 18, 29, and 154) You are a poet making poetry out of old books. You just came across a first edition
copy of "Manfred" by George Gordon Byron, 6th Baron Byron, also known as Lord Byron, one of the finest English poets to ever live
(in your opinion), and an inspiration to your poetry. You are given two sequences of letters: one is the letters of a poem that you
want to write. Specifically, after coming across Manfred’s monologue at the beginning of Scene II, you decide that the poem you
want to write is a permutation of his inspiring speech. The second sequence is letters on the page of the book. Letters correspond to
phonemes, a fundamental linguistic building block. Given the two sequences, determine if you can form your poem by (optionally)
deleting letters from the pages of the book. You remove letters by physically cutting them out of the page with your handy penknife.
Report ’T’ if you can make your poem, and report ’F’ if you cannot.

• Given the task above, and input [’abc’, ’ahbgdc’], what should be reported? [Answer: T]
• Given the task above, and input [’bequtie’, ’buth’], what should be reported? [Answer: F]
• Given the task above, and input [’cbd’, ’cxwdpbu’], what should be reported? [Answer: F]
• Given the task above, and input [’uit’, ’uttiuiuut’], what should be reported? [Answer: T]

(10) exact_chg (no close match in HumanEval) It is Friday, November 22, 1963, in Dallas, Texas. You are trying to take a bus ride, but need
to have exact change to board. Little do you know that today is the day that John F. Kennedy, the 35th President of the United States,
will be assassinated. You have three numbers, respectively named ‘Small,’ ‘Big,’ and ‘Goal.’ Each of these numbers represent something.
‘Small’ represents the number of one dollar bills you have. You think one dollar bills are ok, and that they are overall much more
useful than pennies. ‘Big’ represents the number of five dollar bills you have. You actually quite like five dollar bills because you enjoy
counting by fives. ‘Goal’ represents the cost of the bus ride. The buses in Dallas are quite expensive for reasons no one understands.
Determine if you can take the bus with the change you have. You need exact change because otherwise the bus driver will not let you
board. Report ‘T’ if you have exact change for the amount of money equal to ‘Goal,’ and ‘F’ otherwise.
• Given the task above, and input [’Small=3’, ’Big=1’, ’Goal=9’], what should be reported? [Answer: F]
• Given the task above, and input [’Small=6’, ’Big=1’, ’Goal=4’], what should be reported? [Answer: T]
• Given the task above, and input [’Small=2’, ’Big=2’, ’Goal=8’], what should be reported? [Answer: F]
• Given the task above, and input [’Small=5’, ’Big=4’, ’Goal=10’], what should be reported? [Answer: T]

(11) fizzbuzz (HumanEval 36 reworded) You are a spy in 1967, during the height of the Cold War, and have been sent to Leningrad
undercover. As a spy, you are attempting to defuse a bomb. The bomb is a BLU-3 Pineapple Cluster Bomblet, which you have studied
the properties of extensively. The bomb displays a number on its main panel, "n". You’re currently on a mission to infiltrate a suspected
double agent’s office, but the Soviets must be onto you as they are currently swarming the building–you’ll need to defuse the bomb,
and get out ASAP! Given the value of n, you must report the number that defuses the bomb. Otherwise your life will be brought to an
unfortunate end. Count and report the number of times the digit 7 appears in whole numbers less than n that are divisible by 11 OR
13. Troublingly, you find checking divisibility by 11 and 13 to be noticeably more difficult than checking divisibility by 2 or 5. Do not
“double-count” if the number is divisible by both 11 AND 13.
• Given the task above, and input [’n=130’], what should be reported? [Answer: 4]
• Given the task above, and input [’n=8’], what should be reported? [Answer: 0]
• Given the task above, and input [’n=79.777’], what should be reported? [Answer: 3]
• Given the task above, and input [’n=80.0’], what should be reported? [Answer: 3]

(12) xyz (HumanEval 159 reworded) You’re a hungry rabbit. You are also highly intelligent for a rabbit, and have the ability to make precise
plans for the future. You want to ’eat(x, y, z)’ based on three factors: ’x=the number of carrots you have already eaten’, ’y=the number
of carrots you want to eat’, and ’z=the number of carrots in your fridge’. You have also reinvented the refrigerator and set your fridge
at the optimal temperature for storing carrots. Report a pair of numbers: [total number of carrots eaten, carrots left in the fridge].
These are genetically engineered carrots that don’t spoil. The total number of carrots left in the fridge is equal to the number of
carrots in the fridge minus the number of carrots you want to eat, or 0–whichever is greater. Carrots are actually not the healthiest
food for rabbits. The total number of carrots that you’ve eaten is equal to the number of carrots you’ve already eaten, plus any carrots
you eat today.
• Given the task above, and input [’(10, 3, 20)’], what should be reported? [Answer: [13, 17]]
• Given the task above, and input [’(2, 5, 5)’], what should be reported? [Answer: [7, 0]]
• Given the task above, and input [’(0, 4, 0)’], what should be reported? [Answer: [0, 0]]
• Given the task above, and input [’(12, 0, 50)’], what should be reported? [Answer: [12, 50]]

How Humans Communicate Programming Tasks in Natural Language. . . CHI ’25, April 26–May 01, 2025, Yokohama, Japan

C Codebook Developed For Qualitative Analysis in Study 1

Qualitative Code Description

All Information Contains all the information necessary to solve the test cases
Some Information Missing some of the information necessary to solve the test cases
No Information Contains none of the information necessary to solve the test cases; may simply repeat the context
Generalized All The IPT rephrasing is fully generalizable; none of the context remains
Generalized Some The IPT rephrasing has been somewhat generalized, but some context remains (e.g., given participant’s score totals, find the max)
Generalized None The IPT rephrasing has not been generalized; it is highly tied to its context
Correct Examples The IPT rephrasing contains examples not corresponding to edge cases; these examples are correct
Incorrect Examples The IPT rephrasing contains examples not corresponding to edge cases, but one or more is incorrect
Edge Example Correct The IPT rephrasing contains examples corresponding to an edge case; these examples are correct
Edge Example Incorrect The IPT rephrasing contains examples corresponding to an edge case, but one or more is incorrect
Contains Extra Information The IPT rephrasing contains extraneous information
Concise Attempt A noticeable attempt was made to make the IPT rephrasing more concise
Steps The IPT rephrasing includes steps to solve the task
No Meaningful Information The IPT rephrasing is devoid of any meaningful information
ChatGPT The IPT rephrasing seems to have been written by ChatGPT or another AI tool
Exact Match The participant essentially re-wrote the IPT rephrasing the researchers provided with the same examples (when applicable)

D Depictions of IPTs Given to Senders in Study 2

Figure 15: The bill IPT.

Figure 16: The surcharges IPT.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Pickering et al.

Figure 17: The format IPT.

Figure 18: The scheduling IPT.

Figure 19: The iot IPT.

How Humans Communicate Programming Tasks in Natural Language. . . CHI ’25, April 26–May 01, 2025, Yokohama, Japan

E Study 2 Participant Views

Figure 20: The sender view with instructions collapsed.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Pickering et al.

Figure 21: The sender view with instructions expanded.

How Humans Communicate Programming Tasks in Natural Language. . . CHI ’25, April 26–May 01, 2025, Yokohama, Japan

F Additional Graphs of Demographic Correlations in Study 1

0 2 4 6 8 10 12 14 16
test cases correct

Some high school
 or less (n= 3)

High school diploma
 or GED (n = 22)

Some college, but
no degree (n=52)

Associates or
technical

degree (n=31)

Bachelor's
degree (n=90)

Graduate or
professional

degree (n=44)

Figure 22: The number of test cases answered correctly split by participants’ highest level of education.

0 2 4 6 8 10 12 14 16
test cases correct

18-24 (n-30)

25-34 (n = 86)

35-44 (n=66)

45-54 (n=37)

55-64 (n=18)

65+ (n=5)

Figure 23: The number of test cases answered correctly split by participants’ age range.

0 2 4 6 8 10 12 14 16
test cases correct

Male (n=127)

Female (n=103)

Non-binary/
third gender (n=10)

Figure 24: The number of test cases answered correctly split by participants’ gender.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Pickering et al.

G Additional Regression Tables for LLMs in Study 1

Table 15: Linear regression with the dependent variable in-
dicating how many of the four test cases Code Llama 34B
answered correctly when directly answering. Adjusted 𝑅2 =

0.299.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 1.472 0.261 5.637 <.001

Condition: Examples Non-examples 0.059 0.111 0.533 .594

Condition: Interactive Non-interactive 0.030 0.107 0.281 .779

Sender: # Test Cases Correct – 0.193 0.042 4.660 <.001

Sender is Programmer Non-programmer 0.244 0.127 1.925 .055

Sender Age 18–24 25–34 -0.141 0.185 -0.759 .448
Sender Age 35–44 25–34 -0.044 0.129 -0.338 .735
Sender Age 45+ 25–34 -0.413 0.153 -2.702 .007

Sender is Non-male Male 0.044 0.113 0.393 .695

Sender Degree: None Bachelor’s 0.104 0.126 0.824 .410
Sender Degree: Associate’s Bachelor’s 0.256 0.188 1.361 .174
Sender Degree: Graduate Bachelor’s 0.255 0.155 1.648 .100

IPT: max sum_pos 0.008 0.243 0.032 .974
IPT: num_even sum_pos -1.242 0.261 -4.751 <.001
IPT: reignfall sum_pos 0.390 0.273 1.428 .154
IPT: palindrome sum_pos 0.126 0.251 0.505 .614
IPT: find_sum sum_pos -0.804 0.262 -3.071 .002
IPT: rmv_dup sum_pos -1.256 0.262 -4.796 <.001
IPT: str_diff sum_pos -0.759 0.252 -3.012 .003
IPT: is_subseq sum_pos 0.050 0.255 0.197 .844
IPT: exact_chg sum_pos -0.084 0.247 -0.341 .733
IPT: fizzbuzz sum_pos -1.195 0.269 -4.450 <.001
IPT: xyz sum_pos -0.809 0.265 -3.050 .002

Table 16: Linear regression with the dependent variable in-
dicating how many of the four test cases Code Llama 34B
answered correctly when producing Python code. Adjusted
𝑅2 = 0.446.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 2.332 0.283 8.237 <.001

Condition: Examples Non-examples 0.376 0.120 3.134 .002

Condition: Interactive Non-interactive -0.004 0.116 -0.033 .974

Sender: # Test Cases Correct – 0.233 0.045 5.179 <.001

Sender is Programmer Non-programmer 0.443 0.138 3.220 .001

Sender Age 18–24 25–34 0.003 0.201 0.013 .990
Sender Age 35–44 25–34 -0.091 0.140 -0.654 .513
Sender Age 45+ 25–34 -0.459 0.166 -2.772 .006

Sender is Non-male Male -0.007 0.122 -0.059 .953

Sender Degree: None Bachelor’s 0.132 0.136 0.969 .333
Sender Degree: Associate’s Bachelor’s 0.132 0.204 0.646 .519
Sender Degree: Graduate Bachelor’s 0.109 0.168 0.652 .515

IPT: max sum_pos -1.663 0.263 -6.323 <.001
IPT: num_even sum_pos -1.072 0.284 -3.783 <.001
IPT: reignfall sum_pos -1.307 0.296 -4.413 <.001
IPT: palindrome sum_pos 0.311 0.272 1.145 .253
IPT: find_sum sum_pos -2.255 0.284 -7.946 <.001
IPT: rmv_dup sum_pos -2.888 0.284 -10.165 <.001
IPT: str_diff sum_pos -2.519 0.273 -9.216 <.001
IPT: is_subseq sum_pos -1.830 0.277 -6.617 <.001
IPT: exact_chg sum_pos -1.664 0.267 -6.221 <.001
IPT: fizzbuzz sum_pos -2.095 0.291 -7.194 <.001
IPT: xyz sum_pos -1.584 0.288 -5.506 <.001

Table 17: Linear regression with the dependent variable in-
dicating how many of the four test cases Gemini answered
correctly when directly answering. Adjusted 𝑅2 = 0.388.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 2.162 0.240 8.999 <.001

Condition: Examples Non-examples 0.328 0.102 3.221 .001

Condition: Interactive Non-interactive 0.126 0.098 1.279 .202

Sender: # Test Cases Correct – 0.111 0.038 2.895 .004

Sender is Programmer Non-programmer 0.078 0.117 0.667 .505

Sender Age 18–24 25–34 0.100 0.170 0.585 .559
Sender Age 35–44 25–34 -0.079 0.119 -0.665 .506
Sender Age 45+ 25–34 -0.212 0.140 -1.510 .132

Sender is Non-male Male -0.123 0.104 -1.187 .236

Sender Degree: None Bachelor’s 0.124 0.116 1.068 .286
Sender Degree: Associate’s Bachelor’s -0.111 0.173 -0.640 .522
Sender Degree: Graduate Bachelor’s 0.087 0.142 0.613 .540

IPT: max sum_pos -0.254 0.223 -1.136 .256
IPT: num_even sum_pos -2.053 0.241 -8.534 <.001
IPT: reignfall sum_pos -2.114 0.251 -8.412 <.001
IPT: palindrome sum_pos -2.226 0.231 -9.656 <.001
IPT: find_sum sum_pos -0.755 0.241 -3.138 .002
IPT: rmv_dup sum_pos -1.800 0.241 -7.469 <.001
IPT: str_diff sum_pos -1.871 0.232 -8.069 <.001
IPT: is_subseq sum_pos -1.646 0.235 -7.017 <.001
IPT: exact_chg sum_pos -2.318 0.227 -10.216 <.001
IPT: fizzbuzz sum_pos -1.883 0.247 -7.622 <.001
IPT: xyz sum_pos -1.449 0.244 -5.939 <.001

Table 18: Linear regression with the dependent variable in-
dicating how many of the four test cases Gemini answered
correctly when producing Python code. Adjusted 𝑅2 = 0.383.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 2.398 0.308 7.776 <.001

Condition: Examples Non-examples 0.317 0.131 2.426 .016

Condition: Interactive Non-interactive -0.168 0.126 -1.328 .185

Sender: # Test Cases Correct – 0.228 0.049 4.657 <.001

Sender is Programmer Non-programmer 0.395 0.150 2.637 .009

Sender Age 18–24 25–34 -0.159 0.219 -0.728 .467
Sender Age 35–44 25–34 -0.109 0.152 -0.719 .472
Sender Age 45+ 25–34 -0.655 0.180 -3.631 <.001

Sender is Non-male Male -0.006 0.133 -0.043 .966

Sender Degree: None Bachelor’s 0.077 0.149 0.517 .606
Sender Degree: Associate’s Bachelor’s 0.114 0.222 0.513 .608
Sender Degree: Graduate Bachelor’s 0.232 0.183 1.270 .205

IPT: max sum_pos -1.767 0.286 -6.167 <.001
IPT: num_even sum_pos -0.365 0.309 -1.181 .238
IPT: reignfall sum_pos -0.978 0.323 -3.030 .003
IPT: palindrome sum_pos 0.419 0.296 1.414 .158
IPT: find_sum sum_pos -1.530 0.309 -4.951 <.001
IPT: rmv_dup sum_pos -2.675 0.309 -8.644 <.001
IPT: str_diff sum_pos -2.245 0.298 -7.539 <.001
IPT: is_subseq sum_pos -1.163 0.301 -3.861 <.001
IPT: exact_chg sum_pos -1.514 0.291 -5.196 <.001
IPT: fizzbuzz sum_pos -1.733 0.317 -5.464 <.001
IPT: xyz sum_pos -1.400 0.313 -4.468 <.001

How Humans Communicate Programming Tasks in Natural Language. . . CHI ’25, April 26–May 01, 2025, Yokohama, Japan

H Qualitative Regression Tables for Study 1
H.1 Characteristics of Descriptions (All Conditions)

Table 19: Linear regression correlating
our qualitative codes of the descriptions
written by senders and how many of the
four test cases the (human) receiver an-
swered correctly in Study 1. Adjusted
𝑅2 = 0.218.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 2.695 0.255 10.567 <.001
Necessary Info: None All -1.928 0.229 -8.424 <.001
Necessary Info: Some All -1.074 0.145 -7.413 <.001
Generalized: Not At All Completely 0.034 0.166 0.207 .836
Generalized: Partially Completely -0.419 0.193 -2.173 .030
Reused Our Description Did Not 1.074 0.522 2.057 .040
Concise Not Concise 0.039 0.213 0.184 .854
Lists Steps None 0.123 0.349 0.353 .724
Contains Explanations None 0.584 0.316 1.850 .065
Extraneous Info None -0.050 0.224 -0.222 .824

Table 20: Linear regression correlating
our qualitative codes of the descriptions
written by senders and how many of the
four test cases GPT-4 answered correctly
in Study 1 when directly answering. Ad-
justed 𝑅2 = 0.256.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 3.066 0.237 12.961 <.001
Necessary Info: None All -2.019 0.212 -9.512 <.001
Necessary Info: Some All -1.043 0.134 -7.760 <.001
Generalized: Not At All Completely -0.101 0.154 -0.656 .512
Generalized: Partially Completely -0.284 0.179 -1.585 .114
Reused Our Description Did Not 1.804 0.484 3.728 <.001
Concise Not Concise 0.088 0.198 0.443 .658
Lists Steps None 0.150 0.323 0.464 .643
Contains Explanations None 0.298 0.293 1.017 .310
Extraneous Info None -0.124 0.208 -0.595 .552

Table 21: Linear regression correlating
our qualitative codes of the descriptions
written by senders and how many of the
four test cases GPT-4 answered correctly
in Study 1 when writing Python code. Ad-
justed 𝑅2 = 0.323.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 3.339 0.262 12.742 <.001
Necessary Info: None All -2.245 0.235 -9.545 <.001
Necessary Info: Some All -1.575 0.149 -10.575 <.001
Generalized: Not At All Completely -0.634 0.171 -3.714 <.001
Generalized: Partially Completely -0.235 0.198 -1.186 .236
Reused Our Description Did Not 1.914 0.536 3.570 <.001
Concise Not Concise -0.059 0.219 -0.271 .787
Lists Steps None 0.037 0.358 0.104 .917
Contains Explanations None -0.447 0.324 -1.378 .169
Extraneous Info None 0.195 0.231 0.844 .399

H.2 Characteristics of Examples (Condition: Examples)
For the following tables, we mark a pair as having (consistently) sent examples if at least two of their four IPT descriptions included
examples. We chose this threshold after observing negligible differences in average performance relative to the 4/4 case.

Table 22: Linear regression correlating
our qualitative codes of the descriptions
written by senders in the examples condi-
tion and how many of the four test cases
the (human) receiver answered correctly
in Study 1. Adjusted 𝑅2 = 0.059.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 2.384 0.390 6.117 <.001
of Examples – 0.162 0.104 1.557 .121
Did Not Send Examples Did Send -0.373 0.422 -0.884 .378
Reused Any of Our Examples Did Not -0.750 0.376 -1.998 .047
Included Context Did Not 1.005 0.653 1.538 .126
Explained Examples Did Not 0.231 0.378 0.613 .541
Properly Formatted Not -0.111 0.373 -0.298 .766

Table 23: Linear regression correlating
our qualitative codes of the descriptions
written by senders in the examples condi-
tion and how many of the four test cases
GPT-4 answered correctly in Study 1
when directly answering. Adjusted 𝑅2 =

0.089.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 1.302 0.351 3.706 <.001
of Examples – 0.314 0.094 3.341 .001
Did Not Send Examples Did Send 1.237 0.380 3.255 .001
Reused Any of Our Examples Did Not 0.358 0.339 1.057 .292
Included Context Did Not 0.373 0.589 0.633 .528
Explained Examples Did Not 0.952 0.341 2.795 .006
Properly Formatted Not 0.483 0.336 1.437 .152

Table 24: Linear regression correlating
our qualitative codes of the descriptions
written by senders in the examples condi-
tion and how many of the four test cases
GPT-4 answered correctly in Study 1
when writing Python code. Adjusted 𝑅2 =
0.096.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 1.309 0.410 3.195 .002
of Examples – 0.305 0.110 2.785 .006
Did Not Send Examples Did Send 0.837 0.443 1.890 .060
Reused Any of Our Examples Did Not 0.012 0.395 0.030 .976
Included Context Did Not -1.043 0.687 -1.519 .131
Explained Examples Did Not 0.418 0.397 1.052 .294
Properly Formatted Not 0.738 0.392 1.884 .061

H.3 Characteristics of Interactions (Condition: Interactive)

Table 25: Linear regression correlating
our qualitative codes of the descriptions
written by senders in the interactive con-
dition and how many of the four test
cases the (human) receiver answered cor-
rectly in Study 1. Adjusted 𝑅2 = 0.017.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 2.210 0.152 14.564 <.001
Interacted: No Yes 0.473 0.231 2.045 .042
Clarification Requests – -0.090 1.018 -0.089 .930
Clarification Responses – -0.710 1.108 -0.641 .522
Sender Edited Description Did Not -0.650 0.934 -0.696 .487

Table 26: Linear regression correlating
our qualitative codes of the descriptions
written by senders in the interactive
condition and how many of the four
test cases GPT-4 answered correctly in
Study 1 when directly answering. Ad-
justed 𝑅2 = 0.022.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 2.492 0.139 17.980 <.001
Interacted: No Yes 0.458 0.211 2.166 .032
Clarification Requests – 1.361 0.930 1.464 .145
Clarification Responses – -0.992 1.012 -0.980 .328
Sender Edited Description Did Not -1.066 0.853 -1.250 .213

Table 27: Linear regression correlating
our qualitative codes of the descriptions
written by senders in the interactive
condition and how many of the four
test cases GPT-4 answered correctly in
Study 1 when writing Python code. Ad-
justed 𝑅2 = −0.008.
Independent Variable Baseline 𝛽 SE t p

(Intercept) – 2.287 0.165 13.891 <.001
Interacted: No Yes 0.333 0.251 1.328 .186
Clarification Requests – -0.123 1.104 -0.111 .911
Clarification Responses – -0.787 1.202 -0.655 .513
Sender Edited Description Did Not 0.295 1.013 0.291 .771

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Pickering et al.

I Survey Instruments
I.1 Study 1 Pre-survey
The aim of this study is to examine how people communicate computational tasks, or structured processes that can be automated by a
computer program. No programming experience is required to participate in this study. After completing the demographic questions on the
next page, you will be directed to another website, where the main portion of the study will take place.

Please answer the following demographic questions.
(1) How old are you? • Under 18 • 18-24 years old • 25-34 years old • 35-44 years old • 45-54 years old • 55-64 years old • 65+ years old
(2) What is the highest level of education you have completed? • Some high school or less • High school diploma or GED • Some college,

but no degree • Associates or technical degree • Bachelor’s degree • Graduate or professional degree (MA, MS, MBA, PhD, JD, MD,
DDS, etc.) • Prefer not to say

(3) How do you describe yourself? • Male • Female • Non-binary / third gender • Prefer to self-describe • Prefer not to say

This next portion of the study will evaluate how people communicate programming tasks to each other. Here is some relevant terminology:
• A procedure will describe something to do. For example, a procedure might be “Pick the cheapest price in the list of food item prices.”
• A test case is an input which you will be asked to compute an answer for, given a procedure. In the above example of a procedure, a
test case is a list [1.00, 2.00, 0.50]. The correct answer to this test case is “0.50”.

You will now be directed to another website. At this site, you will be paired with another participant. You will interpret four procedures of
randomized difficulty and answer test cases. If the redirection fails to work, please return your submission, as this is indicative of a larger
technical error caused by your browser configuration.

I.2 Study 1 Post-survey
We will now ask you several follow-up questions regarding your experience participating in our study.

(1) I feel that I understood what I was supposed to be doing in this study. • Strongly disagree • Disagree • Somewhat disagree • Neither
agree nor disagree • Somewhat agree • Agree • Strongly Agree

(2) (If Strongly disagree, Disagree, Somewhat disagree selected) If any part of the study process was hard to understand, please elaborate.

We will now ask questions about your experience relating to the procedures and test cases you saw during the study.
(3) I felt that it was easy to answer test cases using the procedures • Strongly disagree • Disagree • Somewhat disagree • Neither agree

nor disagree • Somewhat agree • Agree • Strongly Agree
(4) (If Strongly disagree, Disagree, Somewhat disagree selected) What did you find to be difficult about using the procedures provided to

answer the test cases?
(5) (If Strongly agree, Agree, Somewhat agree selected) What did you find to be easy about using the procedures provided to answer the

test cases?
(6) What information that you might have found useful, if any, was missing from the four procedures you were given?

This block of 5 questions was shown only to participants assigned to be a receiver
(1) I believe that the procedures provided to me initially, before the other participant made any clarifications I requested, were

clearly understandable. • Strongly disagree • Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree
• Strongly Agree

(2) I believe that the procedures provided to me after the other participant made any clarifications I requested, were clearly
understandable. • Strongly disagree • Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree •
Strongly Agree

(3) I believe that the procedures provided to me were clearly understandable. • Strongly disagree • Disagree • Somewhat disagree •
Neither agree nor disagree • Somewhat agree • Agree • Strongly Agree

(4) I was sometimes confused by the four procedures the other participant wrote. • Strongly disagree • Disagree • Somewhat disagree •
Neither agree nor disagree • Somewhat agree • Agree • Strongly Agree

(5) (If Strongly agree, Agree, Somewhat agree selected) What was confusing about the other participant’s procedures?

This block of 12 questions was shown only to participants assigned to be a sender
The next two questions aim to understand your approach to rephrasing the procedure.

(1) What information did you make sure to include in your rephrasing of the procedures?

How Humans Communicate Programming Tasks in Natural Language. . . CHI ’25, April 26–May 01, 2025, Yokohama, Japan

(2) Please describe how you structured your rephrasing of the procedures.

These next questions relate more generally towards your experiences with the procedures and test cases you encountered during this study.
(3) I believe that the procedures provided to me were clearly understandable. • Strongly disagree • Disagree • Somewhat disagree •

Neither agree nor disagree • Somewhat agree • Agree • Strongly Agree
(4) (If Strongly disagree, Disagree, Somewhat disagree selected) What about the procedures made them difficult to understand?
(5) (If Strongly agree, Agree, Somewhat agree selected) What about the procedures made them easy to understand?
(6) I believe that the rephrased procedures I sent the other participant were clearly understandable. • Strongly disagree • Disagree •

Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree • Strongly Agree
(7) I believe that the other participant would have difficulty answering test cases correctly using my rephrased procedures. • Strongly

disagree • Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree • Strongly Agree
(8) What did you find to be easy about rephrasing the procedures?
(9) What did you find to be difficult about rephrasing the procedures?
(10) (If assigned to the interactive condition) Interacting (chatting, revising procedures) with the other participant improved my rephrased

version of the procedure. • Strongly disagree • Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree
• Strongly Agree

(11) (If Strongly disagree, Disagree, Somewhat disagree selected) Why did interacting with the other participant not help you improve your
rephrasing of the procedure?

(12) (If Strongly agree, Agree, Somewhat agree selected) Why did interacting with the other participant help you improve your rephrasing of
the procedure?

This block of 6 questions was shown only to participants assigned to the interactive condition
(1) Interacting (chatting, revising procedures) with the other participant improved my understanding of the procedure. • Strongly disagree

• Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree • Strongly Agree
(2) (If Strongly disagree, Disagree, Somewhat disagree selected) Why did interacting with the other participant not improve your under-

standing of the procedure?
(3) (If Strongly agree, Agree, Somewhat agree selected) Why did interacting with the other participant improve your understanding of the

procedure?
(4) Interacting (chatting, revising procedures) with the other participant did not help me avoid mistakes • Strongly disagree • Disagree •

Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree • Strongly Agree
(5) (If Strongly agree, Agree, Somewhat agree selected) Why did interacting with the other participant help prevent you from making

mistakes?
(6) (If Strongly disagree, Disagree, Somewhat disagree selected) Why did interacting with the other participant not help prevent you from

making mistakes?

The following questions are meant to test your knowledge of programming. If you’ve never programmed before, you likely will not know
the answer; in that case, please make your best guess.

(1) Which of these values would be most fitting for a Boolean? • Small • I don’t know • Solid • Quadratic • Red • True
(2)

What is the parameter of the function? • String out • String in • I don’t know • int 𝑖 = 𝑥 − 1; 𝑖 >= 0; 𝑖 − − • Outputting a String • int
x = len(in)

(3) What is your experience with computer programming? Please select as many or as few options that apply. • I have completed a
course (in-person or online) focused on computer programming • I hold a degree in computer science, computer engineering, IT, or
similar • Computer programming has been part of my responsibilities for a job • I have used computer programming for a hobby (i.e.,
non-academic, non-work) project • I don’t have any of the experience listed above

(4) Please list all programming languages you are proficient in. Write "none" if you are not proficient in any programming language.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Pickering et al.

In recent years, great strides have been made in advancing artificial intelligence (AI), and AI-powered chatbots are no exception. Some of
these chatbots are capable of taking a description of a problem and providing answers based on that description, similar to the exchange you
just experienced.

(5) In this study, you were paired with another human participant. Would you have done anything differently, regarding any aspect of
the study, if you were paired with an AI rather than a person?

(6) Do you expect that an AI or a human would be better at clearly communicating procedures like those in this study? • Definitely an AI
• Probably an AI • Possibly an AI • They would be equal • Possibly a human • Probably a human • Definitely a human

(7) Do you expect that an AI or a human would be better at understanding procedures like those in this study? • Definitely an AI •
Probably an AI • Possibly an AI • They would be equal • Possibly a human • Probably a human • Definitely a human

(8) Do you expect that an AI or a human would be better at correctly solving test cases like those in this study? • Definitely an AI •
Probably an AI • Possibly an AI • They would be equal • Possibly a human • Probably a human • Definitely a human

(9) (Attention check) For this question, please mark “They would be equal” • Definitely an AI • Probably an AI • Possibly an AI • They
would be equal • Possibly a human • Probably a human • Definitely a human

(10) Do you expect that an AI or a human would be better at writing procedures? • Definitely an AI • Probably an AI • Possibly an AI •
They would be equal • Possibly a human • Probably a human • Definitely a human

(11) How familiar are you with GitHub Copilot/GitHub Copilot-X? • Very unfamiliar • Moderately unfamiliar • Somewhat unfamiliar •
Neither familiar nor unfamiliar • Somewhat familiar • Moderately familiar • Very familiar

(12) Have you used GitHub Copilot//Github Copilot-X? • Yes • No
(13) (If Yes selected) What was your experience using Copilot/GitHub Copilot-X like?
(14) How familiar are you with ChatGPT? • Very unfamiliar • Moderately unfamiliar • Somewhat unfamiliar • Neither familiar nor

unfamiliar • Somewhat familiar • Moderately familiar • Very familiar
(15) Have you used ChatGPT? • Yes • No
(16) (If Yes selected) What was your experience using ChatGPT like?
(17) (Optional) If there’s anything else you’d like to tell us about this study, please enter it here.

I.3 Study 2 Pre-survey
The aim of this study is to examine how people communicate computational tasks, or structured processes that can be automated by a
computer program. No programming experience is required to participate in this study. After completing the demographic questions on the
next page, you will be directed to another website, where the main portion of the study will take place.

Please answer the following demographic questions.
(1) How old are you? • Under 18 • 18-24 years old • 25-34 years old • 35-44 years old • 45-54 years old • 55-64 years old • 65+ years old
(2) What is the highest level of education you have completed? • Some high school or less • High school diploma or GED • Some college,

but no degree • Associates or technical degree • Bachelor’s degree • Graduate or professional degree (MA, MS, MBA, PhD, JD, MD,
DDS, etc.) • Prefer not to say

(3) How do you describe yourself? • Male • Female • Non-binary / third gender • Prefer to self-describe • Prefer not to say

This next portion of the study will evaluate how people communicate computational tasks.
You will now be directed to another website. At this site, you will be paired with another participant. You will interpret four tasks of

randomized difficulty and answer questions.
If the redirection fails to work, please return your submission, as this is indicative of JavaScript failing to work properly. If you can let us

know what browser you were using, as well as any extensions you have installed when you return your submission, this will help us debug
the issue. Thanks!

I.4 Study 2 Post-survey
(1) I feel that I understood what I was supposed to be doing in this study.

• Strongly disagree • Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree • Strongly agree
(2) (If Strongly disagree, Disagree, Somewhat disagree selected) If any part of the study process was hard to understand, please elaborate.

We will now ask questions about your experience relating to the computational tasks and test contexts you saw during the study.
(1) I felt that it was easy to answer test contexts.

• Strongly disagree • Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree • Strongly agree
(2) (If Strongly agree, Agree, Somewhat agree selected) What did you find to be easy about answering the test contexts?
(3) (If Strongly disagree, Disagree, Somewhat disagree selected) What did you find to be difficult about answering the test contexts?

How Humans Communicate Programming Tasks in Natural Language. . . CHI ’25, April 26–May 01, 2025, Yokohama, Japan

This block of 9 questions was shown to all senders
The next two questions aim to understand your approach to writing instructions.

(1) What information did you make sure to include when writing instructions?
(2) Please describe how you structured your instructions.

These next questions relate more generally towards your experiences with the computational tasks (as described by the images) and test
contexts you encountered during this study.

(1) I believe that the computational tasks (as described by the images) to me were clearly understandable.
• Strongly disagree • Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree • Strongly agree

(2) What about the computational tasks (as described by the images) made them easy to understand?
(3) What about the computational tasks (as described by the images) made them difficult to understand?
(4) I believe that the task instructions I wrote and sent the other participant were clearly understandable. • Strongly disagree •

Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree • Strongly agree
(5) I believe that the other participant would have difficulty answering test contexts correctly using my instructions. • Strongly

disagree • Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree • Strongly agree
(6) What did you find to be easy about writing the instructions?
(7) What did you find to be difficult about writing the instructions?

This block of 2 questions was shown to all receivers assigned to the interactive condition
(1) I believe that the instructions provided to me initially, before the other participant made any clarifications I requested, were

clearly understandable.
• Strongly disagree • Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree • Strongly agree

(2) I believe that the instructions provided to me after the other participant made any clarifications I requested, were clearly
understandable. If you did not request any clarifications, select "not applicable".
• Strongly disagree • Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree • Strongly agree

This block of 3 questions was shown to all receivers assigned to the non-interactive condition
(1) I believe that the instructions provided to me were clearly understandable.

• Strongly disagree • Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree • Strongly agree
(2) I was sometimes confused by the instructions the other participant wrote.

• Strongly disagree • Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree • Strongly agree
(3) What was confusing about the other participant’s instructions?

This block of 3 questions was shown to all participants assigned to the interactive condition
(1) Giving or receiving feedback (including chatting if applicable, revising instructions) improved my understanding of the computa-

tional task. If you did not give or receive feedback, select "not applicable".
• Strongly disagree • Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree • Strongly agree

(2) (If Strongly agree, Agree, Somewhat agree selected) Why did giving or receiving feedback (including chatting if applicable, revising
instructions) improve your understanding of the computational task?

(3) (If Strongly disagree, Disagree, Somewhat disagree selected) Why did giving or receiving feedback (including chatting if applicable,
revising instructions) not improve your understanding of the computational task?

This block of 6 questions was shown to all senders assigned to the interactive condition
(1) Receiving feedback (including chatting if applicable, revising instructions) improvedmy instructions. If you did not receive feedback,

select "not applicable".
• Strongly disagree • Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree • Strongly agree

(2) (If Strongly agree, Agree, Somewhat agree selected) Why did receiving feedback (including chatting if applicable, revising instructions)
help you improve your instructions?

(3) (If Strongly disagree, Disagree, Somewhat disagree selected) Why did receiving feedback (including chatting if applicable, revising
instructions) not help you improve your instructions?

(4) Giving or receiving feedback (including chatting if applicable, revising instructions) did not help me avoid mistakes. If you did not
give or receive feedback, select "not applicable".
• Strongly disagree • Disagree • Somewhat disagree • Neither agree nor disagree • Somewhat agree • Agree • Strongly agree

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Pickering et al.

(5) (If Strongly agree, Agree, Somewhat agree selected) Why did giving or receiving feedback (including chatting if applicable, revising
instructions) help you avoid mistakes?

(6) (If Strongly disagree, Disagree, Somewhat disagree selected) Why did giving or receiving feedback (including chatting if applicable,
revising instructions) not help you avoidmistakes?

The following questions are meant to test your knowledge of programming. If you’ve never programmed before, you likely will not know
the answer; in that case, please make your best guess.

(1) Which of these values would be most fitting for a Boolean?
• Small • I don’t know • Solid • Quadratic • Red • True

(2)

What is the parameter of the function?
• String out • String in • I don’t know • int 𝑖 = 𝑥 − 1; 𝑖 >= 0; 𝑖 − − • Outputting a String • int x = len(in)

(3) What is your experience with computer programming? Please select as many or as few options that apply. • I have completed a
course (in-person or online) focused on computer programming • I hold a degree in computer science, computer engineering, IT, or
similar • Computer programming has been part of my responsibilities for a job • I have used computer programming for a hobby (i.e.,
non-academic, non-work) project • I don’t have any of the experience listed above

(4) Please list all programming languages you are proficient in. Write "none" if you are not proficient in any programming language.
(5) How familiar are you with AI coding tools like GitHub Copilot/GitHub Copilot-X?

• Very unfamiliar •Moderately unfamiliar • Somewhat unfamiliar • Neither familiar nor unfamiliar • Somewhat familiar •Moderately
familiar • Very familiar

(6) (Attention check) For this question, please mark "They would be equal"
• Definitely an AI • Probably an AI • Possibly an AI • They would be equal • Possibly a human • Probably a human • Definitely a
human

(7) Have you ever used AI coding tools like GitHub Copilot/GitHub Copilot-X?
• Yes • No

This block of five questions was shown to participants who said Yes.
(a) What AI coding tool(s) have you ever used? (e.g., GitHub Copilot, CodeLlama, ...)
(b) What AI coding tool do you use most frequently?
(c) For the AI coding tool you use most frequently, describe the task(s) you commonly use it for.
(d) For the AI coding tool you use most frequently, describe the specific thing(s) you think that AI coding tool is least useful for.
(e) For the AI coding tool you use most frequently, describe the specific thing(s) you think that AI coding tool ismost useful for.

(8) How familiar are you with AI chatbots like ChatGPT or Gemini?
• Very unfamiliar •Moderately unfamiliar • Somewhat unfamiliar • Neither familiar nor unfamiliar • Somewhat familiar •Moderately
familiar • Very familiar

(9) Have you ever used an AI chatbot like ChatGPT or Gemini?
• Yes • No

This block of five questions was shown to participants who said Yes.
(a) What AI chatbot(s) have you ever used? (e.g., ChatGPT, Gemini, ...)
(b) What AI chatbot do you use most frequently?
(c) For the AI chatbot you use most frequently, describe the task(s) you commonly use it for.
(d) For the AI chatbot you use most frequently, describe the specific thing(s) you think that AI chatbot is least useful for.
(e) For the AI chatbot you use most frequently, describe the specific thing(s) you think that AI chatbot ismost useful for.

(10) (Optional) If there’s anything else you’d like to tell us about this study, please enter it here.

	Abstract
	1 Introduction
	2 Related Work
	2.1 End-User Programming
	2.2 Code Generators

	3 Study 1 Methods
	3.1 Recruitment and Demographic Survey
	3.2 Pairing and Conditions
	3.3 Primary Study Task
	3.4 Interface
	3.5 Post-Task Survey
	3.6 Substituting LLMs For Human Receivers
	3.7 Data Analysis

	4 Study 1 Results
	4.1 Participants
	4.2 Overall Correctness
	4.3 Regressions
	4.4 Programmers vs. Non-Programmers
	4.5 The Role of Examples
	4.6 The Impact of Interactivity
	4.7 Communication to LLMs
	4.8 Study 1: Should LLMs Have Failed?
	4.9 Limitations

	5 Study 2 Methods
	5.1 IPT Selection
	5.2 Pairing

	6 Study 2 Results
	6.1 Participants
	6.2 Overall Correctness
	6.3 The Lexicon Used to Rephrase IPTs
	6.4 Characteristics of Examples
	6.5 Characteristics of Interactions
	6.6 Study 2: Should LLMs Have Failed?

	7 Discussion
	8 Conclusion
	References
	A Additional Details About Selecting IPTs For Study 1
	B Full Descriptions of IPTs Given to Senders in Study 1
	C Codebook Developed For Qualitative Analysis in Study 1
	D Depictions of IPTs Given to Senders in Study 2
	E Study 2 Participant Views
	F Additional Graphs of Demographic Correlations in Study 1
	G Additional Regression Tables for LLMs in Study 1
	H Qualitative Regression Tables for Study 1
	H.1 Characteristics of Descriptions (All Conditions)
	H.2 Characteristics of Examples (Condition: Examples)
	H.3 Characteristics of Interactions (Condition: Interactive)

	I Survey Instruments
	I.1 Study 1 Pre-survey
	I.2 Study 1 Post-survey
	I.3 Study 2 Pre-survey
	I.4 Study 2 Post-survey

